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Abstract

One assumption of multiple regression analysis is homoscedasticity of errors. Heteroscedasticity,

as often found in psychological or behavioral data, may result from misspecification due to

overlooked nonlinear predictor terms or to unobserved predictors not included in the model.

Although methods exist to test for heteroscedasticity, they require a parametric model for specifying

the structure of heteroscedasticity. The aim of this article is to propose a simple measure of

heteroscedasticity, which does not need a parametric model and is able to detect omitted nonlinear

terms. This measure utilizes the dispersion of the squared regression residuals. Simulation studies

show that the measure performs satisfactorily with regard to Type I error rates and power when

sample size and effect size are large enough. It outperforms the Breusch-Pagan test when a

nonlinear term is omitted in the analysis model. We also demonstrate the performance of the

measure using a data set from industrial psychology.
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Introduction

One of the standard assumptions underlying a linear model is that the errors are inde-

pendently identically distributed (i.i.d.). In particular, when the errors are i.i.d., they

are homoscedastic. If the errors are not i.i.d. and assumed to have distributions with

different variances, the errors are said to be heteroscedastic. A linear heteroscedastic

model is defined by:

yi = β0 +β1x1i + ...+βmxmi + εi, i = 1, . . . ,n, (1)

where the εi are realizations (sampled values) of error variables ε that follow a mixture

distribution with normal mixing components:

ε ∼ SZ. (2)

For the random variables S, Z we assume that

S > 0, Z ∼ N (0,1), S⊥Z. (3)

We are making the following regularity assumptions for S2, the random variable that

models the variances of the errors:

0 < E(S2)< ∞, 0 ≤ var(S2)< ∞. (4)

Heteroscedasticity is given when var(S2) takes a positive value. In contrast, homoscedas-

ticity holds if var(S2) = 0. This definition of heteroscedasticity covers both models

with a discrete and with a continuous distribution of the variances of the errors. For the

random variable S2 two types of heteroscedasticity can generally be distinguished: First,

there could be a specific, parametric form of heteroscedasticity where S2 is a function of

the given predictors, such as S2 = exp(a0 +a1x1 + ...+amxm). Models with this type

of parametric heteroscedasticity have been investigated in the past (cf. White, 1980).

Second, there could be an unspecific form of heteroscedasticity, where S2 is entirely

unrelated to the observed explanatory variables. When a linear model for a specific set of

predictors is selected, heteroscedasticity of the errors may be due to different causes. For

instance, in social sciences and especially in psychological research one often deals with

learning mechanisms among individuals during the process of data collection. These

learning mechanisms are one possible source of heteroscedastic errors, because predic-

tion may be more accurate for subjects whose predictor scores are observed at a later

stage in their development. Furthermore, reasons for heteroscedasticity could be omitted

variables, outliers in the data, or an incorrectly specified model equation, for example

omitted product terms. In psychological contexts product terms in regression are often

related to overlooked or yet unidentified moderator variables.
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In the following, we will focus on the relationship between heteroscedastic errors,

model misspecification and the distribution of the regression residuals when a (possibly

misspecified) regression model is fit to the data. In particular, we are interested in

misspecifications resulting from omitted nonlinear terms. In psychological research, for

instance, the issue of omitted interaction terms is often of particular interest, and some

methodological research has been concerned with the development of efficient estimation

methods in the past (cf. Dijkstra & Schermelleh-Engel, 2014; Klein & Moosbrugger,

2000; Klein & Muthén, 2007). Figure 1 gives an illustration of residuals resulting from

an omitted interaction term. In the upper panel of Figure 1, an interaction model has been

analyzed with a correctly specified model. In the lower panel of Figure 1, the interaction

model has been analyzed with a (misspecified) linear model, where the interaction term

was omitted. As can be seen, the dispersion of the residuals of the misspecified model is

no longer homoscedastic.

If the model in Equation (1) is correct and if heteroscedasticity of ε holds, the regular

OLS estimator for the regression coefficients still yields unbiased and consistent param-

eter estimates. However, the estimator is not efficient anymore, because the standard

errors are biased and therefore the usual inference methods are no longer accurate (cf.

Greene, 2012; White, 1980). For heteroscedastic models with correctly specified regres-

sion equation and correctly specified parametric heteroscedasticity, robust estimation

methods have been developed to deal with heteroscedastic errors. Two alternatives

exist that use either a weighted least squares estimator or a heteroscedasticity-consistent

covariance matrix (MacKinnon & White, 1985; White, 1980). In regression analysis

the distribution of the residuals depends on the heteroscedasticity of the errors and the

selection of predictors to model the data. Visible heteroscedasticity may therefore often

be a result of a misspecified regression model. In this case a modification of the model

structure might sometimes be more useful than using a robust estimation method.

There are different ways to test for heteroscedasticity in linear regression models. One

group of tests can be classified as ’model-based heteroscedasticity tests’ (cf. Greene,

2003). These tests are using a specific parametric model to specify the heteroscedasticity.

If this specification is incorrect, the tests may fail to identify heteroscedasticity. Three

well-known statistical tests exist that are used for such parametric models: the Wald test,

the likelihood ratio test, and the Lagrange multiplier test (cf. Engle, 1984; Greene, 2003;

Wald, 1943). Another group of tests, which is able to detect heteroscedasticity in a more

general form, can be called ’residual-based heteroscedasticity tests’ (cf. Greene, 2003).

Most of these tests are only available for categorical predictors (cf. Rosopa, Schaffer,

& Schroeder, 2013) and are not suitable for our purposes. For both categorical and

continuous predictors, two tests remain; the Breusch-Pagan and the White test. These

tests can be represented by an auxiliary regression equation that uses some function

of the estimated residuals as dependent variable and various functions of the proposed
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explanatory variables as predictor variables1. The well-known Breusch-Pagan test was

proposed by Breusch and Pagan (1979) and by Cook and Weisberg (1983). It has been

developed independently in the econometrics and statistics literature (cf. Rosopa et al.,

2013). The Breusch-Pagan test tests the null hypothesis that the residuals’ variances

are unrelated to a set of explanatory variables versus the alternative hypothesis that

the residuals’ variances are a parametric function of the predictor variables. The test

can be represented in an auxiliary regression form, in which the squared residuals of

the proposed model are regressed on the predictors believed to be the cause of the het-

eroscedasticity. The common White test has been proposed by White (1980), where the

squared OLS-residuals are regressed on all distinct predictors, cross products, squares

of predictors, and the intercept. The test statistic is given by the coefficient of determi-

nation of the auxiliary regression multiplied by the sample size (nR2). The statistic of

the White test is chi-square distributed with degrees of freedom equal to the number

of predictors in the auxiliary regression. However, these common heteroscedasticity

tests do not solve the problem of detecting heteroscedasticity that is caused by omitted

predictors. Therefore, Klein and Schermelleh-Engel (2010) proposed the Zhet statistic in

the context of structural equation modeling. This statistic is potentially suitable to detect

heteroscedasticity caused by omitted predictors in structural equation models. However,

in some preliminary studies Zhet showed an undesirably low power in the detection of

heteroscedasticity.

The objective of the current paper is to fill that gap of detecting unsystematic het-

eroscedasticity that relates to omitted predictors or yet unanalyzed nonlinear relation-

ships and explore a basic measure of heteroscedasticity. It does not require a specification

of the heteroscedasticity. Instead, the measure makes direct use of the dispersion of the

squared residuals and an additional auxiliary regression is not necessary. In addition, a

second goal for this paper is to find an approach that can be applied easily.

1Please note that tests for heteroscedasticity presented in original literature with asymptotic chi-square

distributions, such as likelihood ratio, Wald or Lagrange multiplier test, are asymptotically equivalent to

the auxiliary regression approach (cf. Engle, 1984).
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ŷ

R
es

id
ua

ls

Figure 1: Scatter plot of the residuals with modeled interaction term (top) and with an

omitted interaction term (bottom). Data generated for population model

y = 0.5+0.5x1 +0.3x2 +0.4x1x2 + e, with n = 400 and e ∼ N (0,0.16).
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Heteroscedasticity measure

In this section, we introduce the measure hhet to test for heteroscedasticity of the errors.

The measure hhet is intended to measure a possible deviation from homoscedasticity. If

the errors are heteroscedastic, they have distributions with different standard deviations,

and one may then expect that the variance of the squared regression residuals e tends to

be greater than it does when the residuals are homoscedastic. After conducting an OLS

regression, the OLS residuals ei (i = 1, ...,n) are available for all n cases, and we have

ē = 0. We consider

var(e2)

var(e)2
≈ n−1Σ(e2

i − e2)2

(n−1Σ(ei − e)2)2
(5)

=
n−1Σe4

i − (n−1Σe2
i )

2

(n−1Σe2
i )

2

=
n−1Σe4

i

(n−1Σe2
i )

2
−1

= γ̂ −1,

where γ̂ is the common sample-based fourth standardized moment of the residuals. γ̂ is

an estimator for the kurtosis of e (cf. Davidson & MacKinnon, 1993). Originally, the

estimator γ̂ has been formulated for independent ei values, where it is shown that γ̂ is

asymptotically normally distributed (cf. Davidson & MacKinnon, 1993). Here, because

the OLS residuals meet the constraint e = 0, they are not independently distributed. How-

ever, we confirmed in simulation studies the asymptotic behavior of γ̂ when calculated

from OLS residuals for sufficiently large sample sizes (n ≥ 100). Therefore, we can

adopt the known asymptotic distribution

γ̂ ∼ N (3,24/n) (6)

(cf. Davidson & MacKinnon, 1993) for γ̂ based on the OLS residuals. We define the

measure hhet as

hhet :=

√
n

24
(γ̂ −3), (7)

so that

hhet ∼ N (0,1). (8)

In case of heteroscedastic residuals, it can be shown that, asymptotically, hhet takes a

value greater than zero. To see this, it is sufficient to show that lim
n→∞

γ̂ is greater than
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three:

lim
n→∞

γ̂ = lim
n→∞

n−1Σe4
i

(n−1Σe2
i )

2
(9)

=
E(ε4)

(E(ε2))2

=
E(S4)E(Z4)

(E(S2)E(Z2))2

= 3
E(S4)

(E(S2))2

= 3
var(S2)+(E(S2))2

(E(S2))2

= 3

[
1+

var(S2)

(E(S2))2

]
> 3.

Based on this result, it is indicated to use a one-tailed test for hhet .

The test we propose here does not make a specific assumption about what caused a

possible heteroscedasticity, and it does not need a specific parametric model of the

structure of heteroscedasticity. In contrast to residual-based heteroscedasticity tests,

hhet is able to detect heteroscedasticity of the residuals that could be due to unobserved

nonlinear predictor terms.

Simulation study

A Monte Carlo study was conducted with the aim of investigating the sensitivity of

the measure hhet to respond to heteroscedasticity relating to omitted nonlinear terms.

The study investigates the influence of nonlinear effect size and sample size on the

performance of hhet . Various linear and nonlinear population models were selected for

data generation and the residuals were afterwards analyzed with hhet . For reasons of

comparability, the residuals of a model with an omitted unobserved quadratic predictor

were additionally analyzed with the Breusch-Pagan test. In the following, we first

introduce the population and analysis models as well as the particular design of the

study; second, we present the results about the performance of hhet .
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Population models for heteroscedasticity related to observed predictors

Different population models were used for data generation. Four population models

were chosen for estimating the sensitivity of hhet to respond to omitted nonlinear terms.

The first population model MLQI was a full nonlinear model with two linear (L), two

quadratic (Q) and one interaction term (I):

y = β0 +β1x1 +β2x2 +β3x2
1 +β4x2

2 +β5x1x2 + e, (10)

where β0 = .50,β1 = .50, and β2 = .30 were held constant across all simulation con-

ditions. For the variables x1, x2, and e normally distributed data were generated. The

correlation between x1 and x2 was fixed to r12 = .20 in all simulation conditions. The

variances of x1 and x2 were set to 1.00; the variance of e was fixed to .40 in all condi-

tions. MLQI included three nonlinear terms, the effects of these terms were varied in

size correspondingly. For the first condition the effect sizes were set to β3 = β4 = .10,

and β5 = .15; for the second condition to β3 = β4 = .15, and β5 = .20. Combined, the

nonlinear terms explained between 10 % and 19 % of the variance in y.

The second population model MLQ was a nonlinear model with two linear (L) and one

quadratic effect (Q). MLQ is the same as MLQI , except for seting β4 = β5 = 0. The size

of β3 was set to .20 and .30 in two effect size conditions. The quadratic effect explains

between 9 % and 19 % of the variance in y.

The third population model MLI was a nonlinear model with two linear (L) and one

interaction effect (I). MLI is the same as MLQI , except for setting β3 = β4 = 0. The

size of β5 was set to .30 and .40 in two effect size conditions, this equals an explained

variance of 10 % to 18 % in y. In addition, to show the practical use of hhet for

greater regression coefficients, MLI was generated with another set of parameters. In the

additional condition the regression coefficients were set to β0 = 2, β1 = 2, β2 = 1.2, and

to β5 = 1.2 with the same variances and covariances as before for the error term e and

the predictors x1 and x2. The nonlinear term explained 18 % of the variance in y.

The fourth population model ML was a linear model with two linear (L) effects. ML is

the same as MLQI , but it included no nonlinear terms after setting β3 = β4 = β5 = 0.

Population models for heteroscedasticity unrelated to the observed predictors

In addition to investigating the performance of hhet to detect omitted nonlinear terms

which are related to the observed predictors, we examined the sensitivity of hhet to re-

spond to heteroscedastic residuals due to unobserved predictors. For the investigation of

the sensitivity of hhet to detect nonlinear terms of unobserved predictors, three population
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models were chosen: First, a quadratic model MLQ with two linear (L) and one quadratic

effect (Q) was used as nonlinear population model:

y = β0 +β1x1 +β2x2 +β4x2
2 + e, (11)

where β0 = .50,β1 = .50, and β2 = .30. The variables x1,x2, and e were normally

distributed; the correlation between x1 and x2 was set to r12 = .20. The size of β4 was

set to .15 and .25 in two effect size conditions.

Second, the population model MLI with two linear (L) and one interaction effect (I) was

used:

y = β0 +β1x1 +β2x2 +β5x1x2 + e. (12)

MLI is the same as MLQ, except for setting β3 = 0, and β5 = .25 or β5 = .35 in two effect

size conditions.

Third, a linear population model MsL containing only a single linear predictor (sL) was

chosen:

y = β0 +β1x1 + e. (13)

MsL is similar to MLQ, resulting from setting β2 = β4 = 0, such that MsL included only a

single linear predictor and no nonlinear terms.

Design

The data for the population models were generated with the R software and analyzed

with the OLS estimator in R version 3.2.2 (R Core Team, 2015). For each condition R =

10,000 data sets were generated. Across all conditions, except the additional condition

for MLI , the sample size n was 100, 200, 400, 800 or 1,200. For the additional condition

n = 400 was selected. For heteroscedasticity related to the observed predictors, four

population models (MLQI , MLQ, MLI , and ML), two effects size conditions, and five

sample size conditions were implemented, and each population model was analyzed as

a correctly specified and as a misspecified model. For estimating hhet for models that

contain heteroscedasticity related to unobserved predictors, three population models

(MLQ, MLI , and MsL), two effect size conditions, and five sample size conditions were

implemented. For a power analysis the proportion of data sets was examined where hhet
had values greater than the critical value at the 5 % level of a one-sized test (z = 1.65).

Linear population models were analyzed by correctly specified models and by various

overparameterized nonlinear models to study the Type I error rate. The data generated

for nonlinear population models were analyzed by misspecified linear models for power

analysis and by correctly specified models for Type I error analysis. As the ordinary

residuals are scale dependent, some researchers recommend the use of internally or
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externally studentized residuals (Cook & Weisberg, 1982; Stevens, 1984). For the

simulation conditions presented here, the results for ordinary residuals and for internally

studentized residuals were very similar but are not reported in this article.

In the following we will provide the results for the measure hhet . Additionally, some

results for the Breusch-Pagan test and the AIC are compared with hhet . The formula for

the auxiliary regression in the Breusch-Pagan test is

e2

σ̂2
= α0 +α1x1 +α2x2

1 + ε, (14)

where σ̂2 =
∑e2

i
n and ε is normally distributed with zero mean.

Results

In this section, we present the results of the simulation study. In addition to mean

hhet-values, we report the Type I error rates and the power of hhet to detect omitted

nonlinear terms that resulted in heteroscedasticity. The power exceeded 80 % under

several conditions. The 95 % confidence interval (CI) for the error rate of a test with 5 %

nominal Type I error, for a sample of 10,000 cases, is calculated as [4.57,5.43]. For hhet ,

the error rate turned out to be slightly inflated, because under some conditions the error

rate was lying slightly above this range.

Heteroscedasticity related to observed predictors

The following results refer to the investigation of the influence of varying nonlinear

effect size and sample size on the detection of heteroscedasticity with hhet .

Linear population model. For the linear population model ML the mean hhet -values and

Type I error rates for the different linear and nonlinear analysis models ML, MLQ, MLI ,

and MLQI are listed in Table 1. The results indicate appropriate Type I error rates close

to the nominal 5 % level. Only one value was too small, and two values were slightly

too high. On average the hhet -values tended to be slightly negative.

The probability density functions presented in Figure 2 illustrate the convergence of the

distribution of hhet towards the standard normal distribution. For the plot, Epanechnikov

kernel functions were produced. The Epanechnikov kernel was used, because it displays

deviations from normality more clearly than the Gaussian kernel. The functions are

shown for the linear population model ML correctly analyzed as ML for sample sizes
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Figure 2: Estimated probability density function of hhet for the linear Population Model

ML correctly analyzed as ML. The density functions were estimated using an

Epanechnikov kernel function.

100,200,800 and 1,200. The density function for n = 1,200 is close to the N (0,1)-
density and has a kurtosis of 0.36 and a skewness of 0.42. The kurtosis for n = 100 is

3.20, whereas the skewness is 1.22. Both kurtosis and skewness decrease with greater

sample size. In the critical part of the distribution, the right hand tail, there were only

small deviations from the standard normal curve. We note that for small samples the

density curve for hhet > 1.645 is slightly above or below the ideal normal density. As a

consequence, the Type I error does not deviate much from .05 (see Table 1).

Nonlinear population model. In Table 2 the results for the quadratic population model

MLQ are presented. In addition, the power of hhet is listed, where hhet correctly indicates

the presence of heteroscedasticity in the residuals of the linear analysis model ML. It

appears that the Type I error rates were close to the nominal 5 % level for all sample

sizes, where one value was too high. A desirable power of 80 % was exceeded at sample

size n = 600 when the nonlinear effect size was β3 = .30. For a quadratic effect size of

β3 = .20 a power of 80 % was not reached for the listed values. Additional simulations

indicate a required sample size of n ≥ 2,700 (not listed in Table 2).

The results for the population model MLI can be seen from Table 3. The Type I error

rates were again close to their nominal 5 % levels in all conditions, four values were just

outside the 95 % CI bounds. A power close to 80 % was reached for sample size of 1,200

and interaction effect size of β5 = .40. For a small effect size (β5 = .30) a sample size
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of at least n = 4,000 is needed (not listed in Table 3). For the population model MLI , the

AIC was in all cases smaller than for model ML and therefore confirmed the improvement

of the results compared to model MLI . Additionally, hhet was calculated for a model with

larger parameter values, i.e., β0 = 2, β1 = 2, β2 = 1.2, β5 = 1.2 and n = 400. The power

was high (99.99 %), and Type I error rate was only slightly increased (5.62 %).

Table 4 presents the results for the full nonlinear population model MLQI . Type I error

rates were again close to the nominal 5 % level, whereas three values were slightly too

high. A power of 80 % was exceeded in samples with n > 1,000 when the nonlinear

effect sizes were β3 = β4 = .15, β5 = .20. Models with small effects required sample

sizes of n = 2,200 in order to reach a power of 80 % (not listed in Table 4).

Heteroscedasticity unrelated to observed predictors

The following results relate to the investigation of heteroscedasticity due to unobserved

predictors. The influence of nonlinear effect size and sample size on the hhet -values were

examined. The results of the quadratic population model were compared to results of an

analysis with the Breusch-Pagan test.

Linear population model. For the population model MsL with a single linear effect the

mean values of hhet and the Type I error rates are given in Table 5. The Type I error rates

were close to the nominal 5 % level in all conditions ranging from 4.30 % to 5.62 %.

Four Type I error rates were lying outside the 95 % CI bounds.

Nonlinear population models. The power of hhet to detect heteroscedasticity related to an

unobserved predictor in a moderator model is provided in Table 6. MLI was analyzed as

MsL, a model with a single linear predictor x1. Even though the second linear predictor

x2 was not included in the analysis model, hhet responds to the heteroscedasticity caused

by the interaction of the observed predictor x1 and of the unobserved predictor x2. The

power was close to 80 % for n = 800 and β3 = .35.

Table 7 reports the influence of an unobserved predictor in a quadratic population model

on hhet . The predictor x2 that was part of MLQ was not included in the analysis model

MsL (a linear model with only a single linear predictor). The measure hhet responds to the

heteroscedasticity associated to omitted predictors in MsL. The power ranged from 16.31

% (n = 100, β3 = .15) to 98.59 % (n = 1,200, β3 = .25) and approximately exceeded

80 % for n = 500 and β3 = .25 (not listed in Table 7). For reasons of comparability, the

results for an analysis with the Breusch-Pagan test are listed too. The power values of

the Breusch-Pagan test were lower and ranged from 7.98 % to 54.62 %. The reason why

the Breusch-Pagan test does indeed have a power clearly above 5 % lies in the fact that

x1 and x2 were correlated in model MLQ for the simulated data.
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Table 5: Mean hhet -Values and Type I Error Rates (in Percent) as a Function of Sample

Size (n) for the Population Model MsL with a Single Linear Effect.

population
model:

MsL
y = β0 +β1x1

analysis
model:

MsL
y = β0 +β1x1

MLQ
y = β0 +β1x1 +β2x2

+β4x2
2

MLI
y = β0 +β1x1 +β2x2

β5x1x2

n Mean Type I

error

Mean Type I

error

Mean Type I

error

100 -0.13 4.30 -0.11 4.69 -0.12 4.75

200 -0.08 5.36 -0.08 5.36 -0.10 5.12

400 -0.07 5.36 -0.06 5.17 -0.04 5.62

800 -0.04 5.23 -0.04 5.57 -0.05 4.98

1,200 -0.03 5.45 -0.04 5.33 -0.03 5.13

Table 6: Mean hhet -Values and Power (in Percent) as a Function of Sample Size (n) and

Interaction Effect Size for the Population Model MLI .

population
model:

MLI
y = β0 +β1x1 +β2x2 +β5x1x2

analysis model: MsL
y = β0 +β1x1

nonlinear pop.
parameter:

β5 = .25 β5 = .35

n Mean Power Mean Power

100 0.32 12.90 0.68 19.90

200 0.63 18.60 1.52 36.10

400 1.13 31.80 2.14 52.00

800 1.64 43.10 3.24 76.20

1,200 1.92 53.00 3.92 87.30

Under the same conditions, except for using uncorrelated predictor terms, the power of

the Breusch-Pagan test dropped below 14 %, while the power of hhet was unaffected (not

listed in Table 7). A comparison with the White test (not reported here) revealed that the

White test had slightly lower power than the Breusch-Pagan test. Therefore, only results

for the Breusch-Pagan test are reported here. The power of the White test ranged from

5.85 % to 36.5 %.
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Empirical example

To illustrate the applicability of hhet an empirical example is presented where the in-

fluence of job characteristics on burnout was examined. The dependent variable is

emotional exhaustion, which is considered to be one central symptom of the burnout

syndrome (Maslach & Jackson, 1981; Maslach & Leiter, 1997). Exhaustion refers to

feelings of being overextended and drained by job demands. Three predictors were

considered: Job control, work pressure, and concentration requirements. Work pressure

involves perceived time pressure and work volume, and concentration requirements refer

to employee’s experienced degree of task complexity and demands on concentration.

Participants and procedure. The study was carried out in a large civil service organization

of a federal state in Germany (Diestel & Schmidt, 2009; Schmidt & Neubach, 2009).

Participants of the study were tax collectors, recruited from a large tax and revenue

office. During work hours, questionnaires were administered to 641 employees in small

groups of about 15 people. A final sample of 461 employees provided sufficient data.

Mean age was 40.88 (SD = 10.05), 58 % of the employees were female and 89.6 % were

employed on a full-time basis.

Measures. The burnout dimension of emotional exhaustion was measured by Büssing

and Perrar’s (1992) German translation of the Maslach Burnout Inventory (Maslach,

Jackson, & Leiter, 1986). Nine items measured emotional exhaustion (e.g., ’I feel

emotionally drained from my work’). Job control was measured by five items, which

refer to the perceived extent to which an employee can choose different strategies

and methods (Jackson, Wall, Martin, & Davids, 1993; Schmidt, 2004) (e.g., ’To what

extent can you decide how to go about getting your job done?’). Work pressure and

concentration requirements, two dimensions of work load, were measured by subscales

of the Kurzfragebogen zur Arbeitsanalyse (KFZA; Short Questionnaire for Job Analysis)

instrument developed by Prümper, Hartmannsgruber, and Frese (1995). Both scales,

originally measured by two items each, were extended by constructing two additional

items for work pressure and three additional items for concentration requirements

(Schmidt & Neubach, 2009).

Results. Two regression analyses were conducted. First, a linear model was analyzed,

where ’emotional exhaustion’ (EE) was regressed on ’work pressure’ (WP), ’concentra-

tion requirements’ (CR), and ’job control’ (JC):

EE = β0 +β1WP+β2CR+β3JC+ e (15)

The OLS regression for the linear model yielded R2 = .47, the standardized regression

equation is:

ẑEE = .27zWP + .32zCR − .26zJC. (16)
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All three linear effects were significant (with t = 5.93, SE = .045, p < .01 for predictor

WP; t = −6.95, SE = 0.038, p < .01 for predictor JC; t = 7.13, SE = .045, p < .01

for predictor CR). The analysis of the residuals resulted in hhet = 1.84 for the linear

model. For α = 5% the critical hhet value is 1.65. Thus, the residuals showed significant

heteroscedasticity in the linear regression model. It can be inferred that possible modera-

tor and nonlinear effects may have been omitted in the linear model. The AIC for this

model was 1019.82.

In order to detect the origin of the heteroscedasticity, a second regression model with

multiple nonlinear effects was analyzed. As job control is expected to buffer the positive

effect of work pressure on emotional exhaustion (cf. Häusser, Mojzisch, Niesel, &

Schulz-Hardt, 2010; Karasek, 1979) the interaction effect of work pressure and job

control (WP× JC) was included in the regression equation. Additionally, quadratic

terms were included for the predictor WP and JC, because this can reduce the risk of

a spurious interaction (cf. Cortina, 1993; Klein, Schermelleh-Engel, Moosbrugger, &

Kelava, 2009).

EE = β0 +β1WP+β2CR+β3JC+β4WP2 +β5JC2 +β6WP× JC+ e (17)

Before forming product variables, we standardized the predictor variables in order to

reduce multicollinearity and to obtain a correctly standardized solution (Aiken & West,

1991). The OLS regression for the nonlinear model yielded R2 = .51, the standardized

regression equation is:

ẑEE =−.07+ .26zWP + .29zCR − .29zJC +0.07zWP2 −0.06zJC2 − .14zWP × zJC. (18)

Besides significant linear effects, the quadratic effect of work pressure (with t = 2.48,

SE = .027, p = .01) and the interaction effect (with t = −4.2, SE = .034, p < .01)

were significant, while the quadratic effect of job control (with t =−1.88, SE = .029,

p = .06) just failed to reach statistical significance. Compared to the linear model the

value of hhet was reduced to hhet = 1.14. As this value was smaller than the critical value

(1.65) it was concluded that the residuals were now homoscedastic in the nonlinear model.

The nonlinear terms explained satisfactorily all the heteroscedasticity that appeared in

the residuals of the linear model. The AIC value of 996.08 also indicated an improved

model fit compared to the linear model (AIC = 1019.82).

Figure 3 gives estimated histograms of hhet for both linear (left panel) and nonlinear

models (right panel). The hhet-values were estimated using bootstrapping with 10,000

replications. According to our expectations, the distribution of the resampled hhet -values

was shifted to the left when a nonlinear model was fit to the data. The kurtosis was -.05

for the linear model and .08 for the nonlinear model. The linear model had a skewness

of .15, the nonlinear model a skewness of .32.
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Figure 3: Bootstrapped hhet -values for the linear and nonlinear model of emotional

exhaustion. 10,000 data sets were resampled.

Our results of the empirical study are well in line with the Job Demands-Resources

(JD-R) model (Bakker, Demerouti, De Boer, & Schaufeli, 2003; Demerouti, Bakker,

Nachreiner, & Schaufeli, 2001), a model often used to explain how job strain (e.g.,

burnout) may be produced by two working conditions, for example, job demands and

job resources (see also Diestel & Schmidt, 2009). The results revealed a buffering effect

of job control on the relationship between work pressure and emotional exhaustion: For

high values of job control, the enhancing effect of work pressure on emotional exhaustion

is diminished. Additionally, we found a quadratic effect (WP2). While this effect was

not particularly large, it indicates that the effect of quantitative work stress on burnout is

especially severe under high levels of work pressure.

Discussion

In this article, we proposed the measure hhet for detecting heteroscedasticity in regression

analysis. This measure utilizes the kurtosis of the residuals in a new context and makes
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direct use of the dispersion of the squared residuals. In contrast to other heteroscedas-

ticity tests (e.g., Breusch & Pagan, 1979; White, 1980), it does not require a specific

parameterization of heteroscedasticity.

In a Monte-Carlo Study we tested the performance of hhet . The results indicate the ability

of the measure to respond to model misspecification caused by nonlinear predictor terms

omitted in the analyzed model. A power analysis demonstrated the need of sufficiently

large sample size when small nonlinear effects are omitted. We did not investigate the

performance of hhet for particularly small sample sizes. It is evident from our results

that the statistical power would be too low in this case. A Type I error analysis showed

encouraging results, the Type I error rate was never higher than 5.76 % and therefore

only slightly increased. Thus, the measure hhet could be used in regression analysis to

identify heteroscedastic errors. For one simulation condition, hhet was compared to the

AIC. The AIC showed the necessity of the nonlinear terms in all simulated datasets. Still,

it should be noted that the AIC cannot be used to detect heteroscedasticity related to

unobserved predictors. For heteroscedasticity due to omitted predictors, the power of hhet
was considerably higher than the power of the Breusch-Pagan test. This was expected,

because the Breusch-Pagan test only detects explanatory variables that are related to

the error variances (Breusch & Pagan, 1979). On the other hand, if heteroscedasticity

is caused by the observed predictors, residual based tests such as the Breusch-Pagan

test are preferable. Still, hhet does also respond to this kind of heteroscedasticity, but

with lower power. The applicability of hhet was further demonstrated by an empirical

example from psychology, where a regression model with linear terms was shown to

have heteroscedastic error terms related to omitted nonlinear terms. The hhet-value

responded to the fact that the model was misspecified when nonlinear predictor terms

were omitted.

Regression models have been used in the social sciences at least since 1899, when

Yule published a paper on the causes of pauperism (Yule, 1899). At present, regression

models are state-of-the-art not only for the social and behavioral sciences, but also across

scientific disciplines. In order to enhance prediction, nonlinear effects, i.e. interaction

and quadratic effects, have been added to the linear regression equation. The use of

interaction effects has increased significantly since Aiken and West’s (1991) seminal

book on moderated regression. In psychological research overlooked or yet unidentified

moderator variables go typically along with omitted product terms in regression. Adding

an interaction term to a regression model can therefore greatly enhance the understanding

of the relationships among the variables in the model. For example, in the context of

burnout research, several studies have demonstrated buffering effects of diverse resources

on the relationship between stress and strain (cf. Gray-Stanley & Muramatsu, 2011;

Schmidt, 2007). Additionally, curvilinear effects on burnout have been found, for

example, between work ambiguity on burnout (Jamal, 2008) and between job demands
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and anxiety (de Jonge & Schaufeli, 1998).

The present study has some important limitations. First, we examined the measure under

ideal distributional conditions where the residuals were all normally distributed. Future

simulation studies are needed to test the robustness of hhet to violations of the normality

assumption. Second, the effect of strong overparameterization should be investigated

in a simulation study. In practice, the researcher should pay attention to the fact that a

strongly overparameterized model can lead to wider confidence intervals.

One should keep in mind that the hhet measure is not constructive, which means that

a significant hhet-value provides no specific information about the source of the het-

eroscedasticity in the data. There may exist different possible reasons for heteroscedas-

ticity in multiple regression. One possible reason is the presence of outliers in the data,

which should be checked routinely before performing regression analysis and before

applying the measure hhet . In multiple regression an incorrectly specified regression

model, where important variables are omitted or where the functional form is incorrect,

may produce significant results when testing heteroscedasticity. In order to analyze this

type of heteroscedasticity, the Breusch-Pagan test is well suited when the predictors

that form the nonlinear terms are observed. The new measure hhet is advantageous and

could be used if nonlinear terms of unknown predictor variables are assumed to having

been omitted in the study. For this purpose, theoretical considerations about possible

model misspecifications and other potential sources of heteroscedastic residuals are

necessary.
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