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Abstract 

Many constructs are measured using multi-item data collection instruments. Differential item function-

ing (DIF) occurs when construct-irrelevant covariates interfere with the relationship between construct 

levels and item responses. DIF assessment is an active area of research, and several techniques are 

available to identify and account for DIF in cross-sectional settings. Many studies include data collect-

ed from individuals over time; yet appropriate methods for identifying and accounting for items with 

DIF in these settings are not widely available. We present an approach to this problem and apply it to 

longitudinal Modified Mini-Mental State Examination (3MS) data from English speakers in the Cana-

dian Study of Health and Aging. We analyzed 3MS items for DIF with respect to sex, birth cohort and 

education. First, we focused on cross-sectional data from a subset of Canadian Study of Health and 

Aging participants who had complete data at all three data collection periods. We performed cross-

sectional DIF analyses at each time point using an iterative hybrid ordinal logistic regression/item 

response theory (OLR/IRT) framework. We found that item-level findings differed at the three time 

points. We then developed and applied an approach to detecting and accounting for DIF using longitu-

dinal data in which covariation within individuals over time is accounted for by clustering on person. 

We applied this approach to data for the “entire” dataset of English speaking participants including 

people who later dropped out or died. Accounting for longitudinal DIF modestly attenuated differences 

between groups defined by educational attainment. We conclude with a discussion of further directions 

for this line of research. 
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Violations of measurement invariance are a threat to the validity of inference in observa-

tional and experimental studies. Assessing items for differential item functioning (DIF) 

is an important step in the evaluation of test bias. DIF occurs when examinees from 

different groups have differing probabilities of endorsing an item after controlling for 

the underlying ability or trait level measured by the test (Camilli & Shepard, 1994). 

Several techniques exist for identifying and accounting for DIF (Holland & Wainer, 

1993; Millsap & Everson, 1993; Mungas & Reed, 2000; Teresi, 2006; Teresi, Kleinman, 

& Ocepek-Welikson, 2000). Existing algorithms and software for DIF detection presume 

a cross-sectional data structure, in which independent observations are assumed. Longi-

tudinal data violate this assumption. Our aim was to suggest a new method for testing 

and accounting for longitudinal DIF, extending an iterative hybrid ordinal logistic regres-

sion/item response theory (OLR/IRT) framework. 

Most of the work on measurement invariance in longitudinal data has been in the setting 

of confirmatory factor analysis and structural equation modeling (SEM) (McDonald, 

2000; Meredith & Teresi, 2006; Muthen, 1984). Several of these approaches rely on test-

level rather than item-level data (Tisak & Meredith, 1989). However, accounting for 

item-level and scale-level violations of measurement invariance may provide a different 

result than limiting focus to scale-level violations. Three papers evaluated violations of 

measurement invariance for continuous data over time (Pentz & Chou, 1994; Pitts, West, 

& Tein, 1996; Raykov, 2004). Grimm et al. (Grimm, Pianta, & Konold, 2009) proposed 

a longitudinal correlated-trait correlated-method model that allows for trait and method 

variance in observed scores over time. Cai (Cai, 2010) evaluated measurement non-

invariance in a longitudinal setting using a variant of a two-stage linking/testing factor 

analysis model (Baker & Kim, 2004; Canadian study of health and aging working group, 

1994; Stocking & Lord, 1983) developed by Langer (Langer) for cross-sectional DIF 

testing. In the first stage, Cai constrained item parameters to be the same across occa-

sions to estimate factor means and variances over time, essentially using all items to 

anchor the latent variables over time. In the second stage Cai treated estimated latent 

variable means and variances as fixed, and freely estimated item intercepts and slopes. 

Currently, the IRTPRO package implements this technique for exactly two time points. 

To date, there is no available DIF detection package that facilitates evaluation of uniform 

and non-uniform DIF for categorical items at more than two time points. 

In this paper we address these issues with analyses of a longitudinal dataset from the 

Canadian Study of Health and Aging. We evaluated cognitive test items for DIF related 

to sex, birth cohort, and education. 

First, we present results of cross-sectional DIF analyses for each covariate at each time 

point. These analyses permitted us to determine stability over time of item-level DIF 

presence, individual-level DIF impact, and group-level DIF impact. We then present 

methods and results for longitudinal DIF analyses. 
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Study data for all analyses 

Participants 

The Canadian Study of Health and Aging was planned in 1989 as a national longitudinal 

study. Representative samples were drawn from each community (the remainder resided 

in nursing homes), and participants were assessed at 5-yearly intervals: in 1991, 1996, 

and 2001. Details of study design and sampling procedures have been described 

(Canadian study of health and aging working group, 1994; McDowell, Aylesworth, 

Stewart, Hill, & Lindsay, 2001; McDowell, Kristjansson, & Hill, 1997; Tuokko, 

Kristjansson, & Miller, 1995). At baseline (Canadian Study of Health and Aging -1; 

1991), 8,949 community-dwelling participants were interviewed for screening. The 

Modified Mini-Mental State Examination (3MS) (Teng & Chui, 1987) was administered 

at each time point. Of the 7,221 community-dwelling English speakers at baseline, 4,619 

(64 %) had 3MS data from 1996, and 2,698 (37 %) had 3MS data from 2001; 2,635  

(36 %) participants had data from all three time points and comprise the “completers” 

dataset. 

Materials 

The Mini-Mental State Examination (MMSE) was introduced as a brief assessment of 

cognitive functioning (Folstein, Folstein, & McHugh, 1975). The 3MS extends the 

MMSE. It adds four additional sub-tests (date and place of birth, word fluency, similari-

ties, and delayed recall of words). The 3MS can be considered sufficiently unidimen-

sional for IRT analyses (Crane, Narasimhalu, Gibbons, Mungas, et al., 2008). Brief 

descriptions of item content are found in most of the tables. 

Statistical methods 

We analyzed DIF related to three covariates: sex, birth cohort, and education (See Table 

1). We dichotomized birth cohort at up to 1919 vs. 1920 and later, roughly the median of 

the “completers” dataset. DIF related to education has been found in cognitive tests even 

with very few years of education (Crane, Gibbons, Jolley, van Belle, et al., 2006), so we 

dichotomized education at 6 years.  

We focus our presentation on education. Complete results for sex and birth cohort can be 

obtained from the authors on request. 
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Table 1:  

Demographic Characteristics of English Speakers from the Canadian Study of Health and Aging 

Covariate 
“Completers” dataset “Entire” dataset 

 Baseline 2nd visit 3rd visit 

 Male  

Sex  Female  

 Total 

985 

1,650 

2,949 

4,272 

1,834 

2,785 

993 

1,705 

2,635 7,221 4,619 2,698 

 ≤ 75 

Birth cohort  > 75 

 Total 

1,869 

766 

3,574 

3,647 

2,688 

1,931 

1,899 

799 

2,635 7,221 4,619 2,698 

 ≤ 6 years 

Education*  > 6 years 

 Total 

414 

2,216 

1,594 

5,582 

846 

3,745 

419 

2,230 

2,630 7,176 4,591 2,649 

Note: Education level was missing for 5 participants. 

Cross-sectional method 

DIF detection methodology. We have developed and refined an iterative hybrid 

OLR/IRT approach to detect and account for DIF (Crane, Gibbons, Jolley, & van Belle, 

2006; Crane, Narasimhalu, Gibbons, Pedraza, et al., 2008). We summarize the steps of 

our algorithm here:  

1. Obtain unadjusted (“naїve”) ability estimates ( ̂ ) using IRT. 

2. Categorize each item as having or not having DIF using a series of nested OLR 

models, conditioning on ̂  from Step 1. 

3. Use IRT to obtain revised ability estimates ( ˆ
r ) that account for items identified 

with DIF in Step 2. 

4. Categorize each item as having or not having DIF again, conditioning on ˆ
r from 

Step 3. 

5. Compare results of Step 2 and Step 4. If the same items are categorized as having 

and not having DIF, stop. 

6. If different items are identified, obtain revised ability estimates ( ˆ
r ) that account 

for items identified with DIF in Step 4. 

7. Repeat steps 4-6 until items categorized as having and not having DIF are the same  

as seen in a prior run. 

Each of these steps is discussed in more detail in Crane, Gibbons, Jolley, & van Belle, 

2006 and Crane, Narasimhalu et al., 2008. 
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Cross-sectional results 

Cross-sectional item-level DIF results for the “Completers” dataset (n = 2,635). 

Item-level DIF findings related to education are presented in Table 2 for the “complet-

ers” dataset (n = 2,635 at each time point). For each of the covariates, too few items 

remained without DIF to anchor the scale when we used a p-value of 0.05, so we used a 

more stringent p-value criterion of 0.005. 

0 1

0 1 2

0 1 2 3

 1:   ( 1| ,  ,  )

 2 :   ( 1| ,  ,  )

ˆ ˆ

ˆ  

 3:   ( 1| ,  ,

ˆ

ˆ ) ˆ ˆ 

Model Logit P Y G T

Model Logit P Y G T G

Model Logit P Y G T G G

   

    

      

   

     

        

 

Numbers in the columns indicate the p-value associated with the χ
2
 difference between 

models 2 and 3 for NUDIF and between models 1 and 2 for UDIF. Five items – counting, 

similarities, repetition of a phrase, writing a sentence, and copying interlocking pentagons – 

were identified with DIF in all three datasets. Two items – first recall of 3 words and second 

recall of 3 words – were identified with DIF at two time points but not the third. Four of the 

other items were identified with DIF at only one of the three time points.  

Table 3 summarizes the cross-sectional DIF findings for all 3 covariates. Across the 3 

time points and the 3 covariates, 28/57 item×covariate pairs (49 %) were consistently 

identified to be free of DIF, 13/57 (23 %) were consistently identified with DIF, and the 

remaining 16/57 pairs (28 %) were identified with DIF at some time points but not oth-

ers. Thus in a sizable proportion of cases, we found inconsistent results across time 

points for item×covariate pairs, though the same individuals were examined at each time 

point, the covariates did not change, and the same DIF detection algorithm was used with 

the same p-value threshold for determining whether items were identified with DIF for 

each covariate. 

Cross-sectional results at baseline for all English speakers (baseline of the "entire" 

dataset, n = 7,221). We then turned our attention to the dataset that included baseline data 

from all participants, including those who subsequently died or dropped out of the study. 

Item-level DIF findings for education are summarized in the right hand columns of Table 2. 

Referring to the left column of Table 2, 9 items – counting, first recall of three words, date, 

four-legged animals, similarities, repetition of a phrase, writing a sentence, copying inter-

locking pentagons, and second recall of three words – were identified with DIF with respect 

to education in the baseline “completers” dataset. The right column of Table 2 shows item-

level findings for DIF associated with education in the baseline “entire” dataset using the 

more stringent p-value criterion of 510
-8

. With three exceptions – date, animals and second 

recall of three words – all of the items identified with DIF in the baseline “completers” 

dataset were also identified with DIF in the baseline “entire” dataset.  

The different p-value thresholds used for these three analyses may explain the differ-

ences in item-level findings, as a subset of items identified with DIF using a less strin-

gent p-value criterion applied to the smaller “completers” dataset were also identified  
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Table 3: 

Summary Table of Cross-sectional DIF Findings for the “Completers” Dataset at 3 Time Points 

Items Sex Birth 

cohort 

Education Total 

Not identified with DIF at any time point  

Identified with DIF at all 3 time points  

Identified with DIF at any 1 or 2 time points 

9 

6 

4 

11 

2 

6 

8 

5 

6 

28 

13 

16 

Total 19 19 19 57 

 

with DIF using the more stringent p-value criterion in the larger “entire” dataset. However, 

differences in power and p-value criterion cannot explain differences in our findings for 

sex; most (but not all) of the items identified with DIF in the smaller “completers” dataset 

were also found to have DIF in the larger “entire” dataset, while an additional item was 

identified with DIF in the larger “entire” dataset but not the smaller “completers” dataset. 

Individual-level DIF impact. DIF impact is an expression of the clinical relevance of 

DIF at the scale level, and can be quantified as the difference between scores that ac-

count for DIF and scores that ignore DIF. We analyzed each covariate separately starting 

with an unadjusted (naїve) ability estimate for item-level DIF presence. It is also useful 

to determine the cumulative impact of DIF across all of the covariates simultaneously. 

To do this, we evaluated each demographic category in turn, starting with sex. Next we 

evaluated age, using the sex-specific items when necessary. Finally, we evaluated educa-

tion using age and sex-specific items. This resulted in scores that account for DIF with 

respect to all of the covariates simultaneously. In the absence of any published data on a 

clinically important difference or minimal important difference (Hays, Farivar, & Liu, 

2005; Revicki, Hays, Cella, & Sloan, 2008) for the 3MS, we use the median standard 

error of measurement from the naїve IRT ability estimates as our comparator for deter-

minations of individual-level impact, and refer to differences larger than that value as 

indicating salient DIF impact (Crane, Cetin, et al., 2007; Crane, Narasimhalu, Gibbons, 

Pedraza, et al., 2008). For the 3MS in the Canadian Study of Health and Aging, the me-

dian standard error of measurement at the baseline evaluation was 0.42. 

The top group of four plots in Figure 1 shows the individual-level impact of DIF related 

to education. The top three plots show results from the “completers” dataset (n = 2,635) 

for the first, second and third study visits, and the last shows results from the baseline of 

the “entire” dataset (n = 7,221). The first box plot of this group shows results for the 

baseline time point for the “completers” dataset (n = 2,635). The dots on either side of 

the box for this top plot extend beyond the median of the standard error of measurement, 

indicating that for many individuals there was salient DIF impact related to education at 

this time point. At the second time point, we see a lot more individuals with salient DIF 

impact related to education. At the third, the impact of DIF appears to be attenuated 

compared to the second time point, as even the most extremely impacted individuals had 

differences between scores right around 0.42. Figure 1 demonstrates that not only do the  
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Figure 1: 

Cross-sectional DIF impact for English speakers. In this box-whiskers plot, the box indicates 

the inter quartile range (IQR), while the whiskers indicate the upper and lower adjacent values 

as defined by Tukey (Tukey, 1977). Outliers (observations more extreme than the upper and 

lower adjacent values) are represented by dots. The graph shows the difference between 

ability estimates accounting for DIF for each covariate (and overall) and unadjusted ability 

estimates. If DIF had no impact for an individual, that observation should lie at zero. The 

plots are presented in order: I (baseline for “completers”), II (2nd visit for “completers” data), 

III (3rd visit for “completers”) and I* (baseline for “entire” data). Vertical reference lines are 

placed at ±0.42 to indicate the presence of ‘salient’ DIF. 0.42 was the median of the standard 

error for the unadjusted ability estimate at baseline for the “entire” dataset 

 

specific items with DIF identified across time points differ, so too does the magnitude of 

DIF impact. The final box plot in this top group shows results for the baseline time point 

for the “entire” dataset (n = 7,221). Compared with the top box plot, the larger sample 

size and smaller p-value criterion appear to result in smaller magnitude of DIF impact. 

The bottom four plots in Figure 1 show individual-level DIF impact of all three covari-

ates considered simultaneously. We see similar patterns of results across time points as 

seen for education. 

Group-level DIF impact. An example of group-level impact is shown in Figure 2, com-

paring DIF impact between scores that accounted for DIF related to all three covariates 

and the naїve scores that did not account for any source of DIF. The top left graph shows  
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Figure 2: 

Group-level DIF impact for education 

 

results for the “completers” dataset (n = 2,635) at the baseline time point. The median 

effect of accounting for DIF is to shift values for people with low education to the right 

as depicted in the top box plot, so that values accounting for DIF on average leads to a 

higher score than scores not accounting for DIF. The top right graph in Figure 2 shows 

group-level DIF impact for the “completers” dataset at the second time point. Here, the 

median effect of accounting for DIF for those with higher levels of education is to shift 

values to the left. The bottom left graph in Figure 2 shows group-level DIF impact for 

the “entire” dataset at the baseline time point (n = 7,221). While the median effect is the 

same as for the baseline of the “completers” dataset shown in the top left graph, it is 

somewhat attenuated here.  

For the baseline of the “completers” dataset, the difference between the means for the 

lower and higher education group for the naїve scores that do not account for DIF was 

0.92 and after accounting for DIF the difference decreased to 0.90 (See Table 4). For the 

baseline of the “entire” dataset and the second and third visits for the “completers” da-

taset we see the same pattern; the difference between the means decreased by 0.12, 0.41, 

and 0.10 after accounting for DIF. Ignoring DIF related to education exaggerates differ-

ences between education subgroups. 
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Table 4: 

Mean Differences between Naїve & Adjusted Estimates for Education 

 Education  

Low High Differences 

naïve adjusted naïve adjusted naïve adjusted 

Completers at baseline  

Entire at baseline  

Completers at visit 2 

Completers at visit 3  

-0.77 

-0.69 

-0.79 

-0.55 

-0.76 

-0.60 

-0.45 

-0.46 

0.15 

0.21 

0.15 

0.10 

0.14 

0.18 

0.08 

0.09 

0.92 

0.90 

0.94 

0.65 

0.90 

0.78 

0.53 

0.55 

 

 

Summary and implications of cross-sectional findings. Our evaluations of the “com-

pleters” dataset enabled us to use data from each time point as an independent assess-

ment of item-level DIF findings. We were impressed with the instability of item-level 

findings across time points. As shown in Table 3, a large group of items were inconsist-

ently found to have DIF (16 item-covariate pairs, or 28 % of all item-covariate pairs). 

The “completers” dataset represented a non-random sample of all data points, so we 

compared findings from baseline from the “completers” dataset to the “entire” dataset 

that also included people who subsequently died or dropped out of the study. Here sev-

eral issues were clarified. One was that analyzing DIF in a larger dataset necessitated 

more stringent criteria for labeling an item as having DIF to avoid categorizing items 

with miniscule differences as having DIF. Second was that increased power explained 

some but not all of the discrepancies in findings between the “completers” and the “en-

tire” datasets at the baseline time point.  

Individual-level and group-level DIF impact findings were also very interesting. Figure 1 

shows that the magnitude of DIF impact varied across time points for the “completers” 

dataset, while the magnitude of DIF impact for the “completers” dataset and the “entire” 

dataset at the baseline time point could be very different. 

Taken together, these findings motivated the need to develop an extension of our cross-

sectional approach to detecting and accounting for DIF to the case of longitudinal data. 

Such an approach will be able to use all available data to determine whether items have 

DIF, overcoming the problem of variability across time points in whether items were 

found with DIF. 

Longitudinal methods 

With longitudinal datasets, it is likely more efficient to use all of the data in a single 

analysis. We thus set out to modify our cross-sectional DIF detection procedures to ap-

propriately handle longitudinal data. In the sections below we delineate the considera-
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tions we faced when extending the framework outlined above to the case of longitudinal 

data. 

Obtain unadjusted naїve ability estimates using IRT. Like all confirmatory factor 

analysis factor scores, the metric of IRT scores is indeterminate. It is common in cross-

sectional IRT analyses to fix the mean and standard deviation of the metric to 0 and 1 in 

some relevant population. In the cross-sectional analyses, this comprised the entire co-

hort analyzed at each time point. Thus, in the cross-sectional analyses summarized 

above, the mean (standard deviation) at each time point for the population considered 

was 0(1). 

With longitudinal data, we were interested in tracking changes in cognition over time on 

a single metric. Recent years have seen the development of models that can incorporate 

longitudinal item-level data to obtain item parameters using data from all time points 

(Glas, Geerlings, van de Laar, & Taal, 2009; Liu, 2008; te Marvelde, Glas, van 

Landeghem, & van Damme, 2006). Existing DIF detection packages do not accommo-

date these more sophisticated models. We thus focused our item parameter estimation 

efforts on the baseline dataset from the “entire” sample (n = 7,221), and then used these 

item parameters to obtain ability estimates at subsequent time points. This strategy has 

the advantage of estimating item parameters from the largest available cross-sectional 

dataset, and of obtaining ability estimates at subsequent time points on the same scale. 

Categorize items as having or not having DIF using a series of nested ordinal 

logistic regression models. An important consideration in using the longitudinal data 

was to account for the fact that observations of the relationship between item respons-

es and covariates while controlling for cognitive ability levels were not from  inde-

pendent analytic units. There are limited options currently available for accomplishing 

this task for ordinal logistic regression models. We used a simple approach for this 

relatively straightforward dataset, where we used Stata's default approach to clustering 

by person. The clustered sandwich estimator specifies that the standard  errors allow 

for intragroup correlation, relaxing the usual requirement that the observations be 

independent. That is, the observations are independent across groups (clusters) but not 

necessarily within groups.  

It was fairly straightforward to modify the nested logistic regression models shown on 

Pg. 131 to include a main effect for time and interactions between time and each of the 

other terms, as seen in the models shown below: 

0 2 3

0 2 3 4

0 2 3 4 5

ˆ ˆ ˆ 1: Logit ( 1) | , , ) ,

ˆ ˆ ˆ 2: Logit ( 1) | , , ) ,

ˆ ˆ ˆ 3: Logit ( 1) | , , ) ,

ˆ 4: Logit ( 1) | , , )

Model P Y G T T T

Model P Y G T T T G

Model P Y G T T T G G T

Model P Y G T

      

       

        



        

          

             

  0 2 3 4 5 6
ˆ ˆ ˆ, T T G G T G                       

 

where P(Y = 1) is the probability of endorsing an item, ̂  represents the IRT estimate of 

the cognitive ability, G (group) represents a demographic category (sex, birth cohort or 

education) and T represents time point. 



S. Mukherjee, L. E. Gibbons, E. Kristjansson & P. K. Crane 138 

The reader will note that we did not model the 3-way interaction term between time, 

group, and ability. Such a term would capture differences across time in non-uniform 

DIF (that is, the interaction between ability and demographic group). Such a term could 

be of interest to those whose primary interest was in DIF effects over time, but our inter-

est was in capturing the average non-uniform DIF effect across time points, which is 

captured by the 2-way interaction between group and ability identified by the β6 coeffi-

cient in Model 4.  

We were similarly interested in the average uniform DIF effect across time points; this is 

captured by the β4 coefficient in Model 2. This approach ignores changes in the uniform 

DIF effect over time points, captured by the group by time interaction associated with the 

β5 coefficient in models 3 and 4. 

Account for items identified with DIF in step 2 to obtain revised ability estimates. 

We used results obtained from the DIF detection with longitudinal data to prepare a new 

cross-sectional baseline dataset. A limitation of this method is that if the average DIF 

effect is driven by DIF effects at time points other than the initial time point, accounting 

for DIF in this way will result in under-adjustment. This approach is appropriate to the 

extent that time 1 DIF is representative of the overall DIF effect, which is an unexamined 

assumption and a limitation of this approach. Some extension of the te Marvelde / Glas 

approach (Glas, et al., 2009; te Marvelde, et al., 2006) which uses data from all the time 

points to determine item parameters will handle this problem better. 

Results with longitudinal data 

Table 5 shows DIF findings related to education for the longitudinal dataset. Comparing 

the results with the right-most columns in Table 2, we see that with one exception – first 

recall of three words – all items identified with DIF in the cross-sectional dataset were 

also identified with DIF in the longitudinal dataset.  

Our findings with the entire longitudinal dataset were similar to but slightly different 

from the cross-sectional analyses of the entire baseline dataset. Because we had substan-

tially more power to detect DIF with the longitudinal dataset, we had to use more strin-

gent criteria to ensure adequate numbers of anchor items for each analysis. We used 

longitudinal data to categorize DIF, so time point-to-time point variability in findings 

summarized in Table 4 was attenuated.  

Cross-sectional person-level DIF impact from longitudinal DIF analyses 

We used ability estimates of each time point from longitudinal DIF detection analyses 

and used the difference between scores that accounted for DIF and scores that ignored 

DIF to analyze individual-level DIF impact. The top group of three box plots in Figure 3 

shows individual-level DIF impact related to education. Sizable numbers of individuals 

have salient DIF impact in both positive and negative directions. Nevertheless, the mag- 
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Table 5: 

Longitudinal Non-uniform & Uniform Differential Item Functioning with respect to 

Education for English Speakers (“Entire” Dataset) 

Items Education (p = 510
-16

) 

NUDIF UDIF 

Birth Year 

Birth Day 

Birth Month 

Birth Province 

Birth Town 

Three Words 

Counting 

First Recall 

Today's Date 

Spatial Orientation 

Naming 

Four-legged Animals 

Similarities 

Repetition 

Read & Obey 

Writing 

Copying Pentagons 

Three-stage Command 

Second Recall 

0.8 

0.1 

0.9 

0.8 

0.7 

0.5 

0.01 

< 0.001 

< 0.001 

< 0.001 

0.8 

< 0.001 

< 0.001 

0.2 

0.8 

0.01 

0.9 

0.9 

< 0.001 

no 

no 

no 

no 

no 

no 

no 

no 

no 

no 

no 

no 

no 

no 

no 

no 

no 

no 

no 

0.7 

0.4 

0.2 

0.3 

0.8 

0.03 

< 510
-16

 

0.8 

0.01 

< 510
-16

 

0.05 

0.7 

< 510
-16

 

< 510
-16

 

< 0.001 

< 510
-16

 

< 510
-16

 

0.7 

0.04 

no 

no 

no 

no 

no 

no 

yes 

no 

no 

no 

no 

no 

yes 

yes 

no 

yes 

yes 

no 

no 

 

 

nitude of DIF impact related to education is rather smaller in the longitudinal “entire” 

dataset than it was in the cross-sectional “completers” datasets (see Figure 1). 

The bottom group of three box plots in Figure 3 shows individual-level DIF impact of all 

covariates considered simultaneously. There are a few individuals with salient DIF im-

pact at each time point. Again, compared with the individual-level DIF in the “complet-

ers” dataset depicted in Figure 1, individual-level DIF impact appears smaller with the 

“entire” longitudinal dataset. 

Cross-sectional group-level DIF impact 

Figure 4 presents group-level DIF impact for education at each time point based on lon-

gitudinal DIF findings. Group-level DIF impact for education in the cross-sectional DIF 

analyses of the completers dataset was depicted in Figure 2, which is characterized by 
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inconsistent DIF effects at different time points, though the same individuals were in-

cluded in each analysis. In contrast, as shown in Figure 4, when we evaluated group-

level DIF impact at each time point using longitudinal analyses for the “entire” dataset, a 

consistent picture of DIF related to education emerges, such that accounting for DIF 

attenuates differences in scores between individuals with high and those with low educa-

tion. Accounting for longitudinal DIF smoothed out some of the time point-to-time point 

variability that characterized cross-sectional DIF findings. 
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Figure 3: 

Cross-sectional DIF impact for English speakers using estimates from longitudinal analysis. 

In this box-whiskers plot, the box indicates the inter quartile range (IQR), while the whiskers 

indicate the upper and lower adjacent values as defined by Tukey (Tukey, 1977). Outliers 

(observations more extreme than the upper and lower adjacent values) are represented by 

dots. The graph shows the difference between ability estimates accounting for DIF for each 

covariate (and overall) and unadjusted ability estimates. If DIF had no impact for an 

individual, that observation should lie at zero. The plots are presented in order: I (baseline for 

“entire” dataset), II (2nd visit for “entire” dataset) and III (3rd visit for “entire” dataset). 

Vertical reference lines are placed at ±0.42 to indicate the presence of ‘salient’ DIF. 0.42 was 

the median of the standard error for the unadjusted ability estimate at baseline for the “entire” 

dataset. 
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Figure 4: 

Group-level DIF impact for education using estimates from longitudinal analysis. The plots 

are presented in order: Visit 1 (baseline for “entire” dataset using estimates from longitudinal 

analyses), Visit 2 (2nd visit for “entire” dataset using estimates from longitudinal analyses), 

Visit 1* (baseline for “entire” dataset using estimates from cross-sectional analyses) and Visit 

3 (3rd visit for “entire” dataset using estimates from longitudinal analyses). 

Longitudinal group-level DIF impact for education 

We developed a way to address longitudinal group-level DIF impact. As a first step, we 

normalized scores at baseline to have a mean of 0 and a SD of 1. We applied these trans-

formations at the follow-up visits so all scores were on the same metric. We were inter-

ested in the effects of education on the intercept and slope terms. We performed mixed 

effects regressions for naїve scores ignoring DIF and scores accounting for all sources of 

DIF, including terms for education and the interaction of education and time.  

Results from the mixed-effects models are presented in Table 6. The most noticeable 

difference between the two models is in the difference in cognitive ability at baseline 

associated with high vs. low education subgroups. In the model with scores that ignore 

DIF, predicted scores at baseline are 0.47 for the better-educated group and -0.88 for the 

less-well educated group, a difference of 1.35. In the model with scores that account for 

DIF, predicted scores at baseline are 0.44 for the better-educated group and -0.74 for the  
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Table 6:  

Effect of Education on the Rate of Cognitive Decline 

 Coefficient S.E. p-value C.I. 

Coefficients for models using 

IRT scores that ignore DIF:  

Constant  

Time  

Group  

TimeGroup 

 

 

0.47 

-0.26 

-0.88 

-0.03 

 

 

0.02 

0.01 

0.04 

0.02 

 

 

< 0.001 

< 0.001 

< 0.001 

0.24 

 

 

(0.44, 0.50) 

(-0.28, -0.24) 

(-0.95, -0.80) 

(-0.07, 0.02) 

Coefficients for models using  

overall DIF adjusted IRT scores: 

Constant  

Time  

Group  

TimeGroup 

 

 

0.44 

-0.27 

-0.74 

-0.03 

 

 

0.02 

0.01 

0.04 

0.02 

 

 

< 0.001 

< 0.001 

< 0.001 

0.20 

 

 

(0.41, 0.48) 

(-0.29, -0.25) 

(-0.81, -0.66) 

(-0.08, 0.02) 

 

 

less well-educated group, a difference of 1.18. These results suggest that 14 % of the 

observed difference in model-predicted intercepts of cognitive functioning is due entirely 

to DIF. 

Discussion 

We analyzed longitudinal data from the Canadian Study of Health and Aging for DIF 

related to sex, birth cohort and education. Analyses of the “completers” dataset enabled 

us to treat the data as three independent opportunities to evaluate cross-sectional DIF. 

We found considerable differences in which items were identified with DIF, though the 

sample size and distribution of demographic covariates were fixed. We also evaluated 

baseline data from the “entire” dataset that included people who subsequently died or 

dropped out of the study, and again found differences in items identified with DIF com-

pared to the baseline of the “completers” dataset. 

The baseline data from the “entire” dataset was roughly 3 times larger than the “complet-

ers” subset of the data. With large sample sizes even trivial differences across groups 

may be statistically significant. We thus reduced the sensitivity of our DIF detection 

criterion to ensure adequate calibration of the 3MS and found cross-sectional results of 

the smaller dataset of those with complete data and the larger “entire” dataset were dif-

ferent from each other.  

We thus set out to develop an approach to using longitudinal data to evaluate scales for 

DIF. We extended our cross-sectional OLR/IRT hybrid framework. With the longitudinal 

dataset, we were able to estimate whether items had DIF when accounting for within-
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person correlation across time. We were able to account for DIF, and use scores that 

accounted for DIF to determine whether demographic characteristics were associated 

with cognition at the intercept and with the rate of cognitive decline. Rates of cognitive 

decline were negligibly different when accounting for or ignoring DIF. However, model-

based intercepts were quite a bit different when ignoring and accounting for DIF, indi-

cating that some of the differences in scores across education groups are due to DIF. 

We had to address several challenges to analyze longitudinal data for DIF. The first 

challenge we faced was in estimating ability levels using the longitudinal data. We chose 

to use the baseline dataset for calibration and then to use item parameters derived from 

the baseline data to generate scores for the other time points. A more elegant solution 

would have been to use a hierarchical IRT model that places the measurement part (the 

item parameters and ability estimates) on one level in the hierarchy, and trajectories of 

ability over time on another level in the hierarchy. Hierarchical IRT models have been 

developed in the past several years (Fox & Glas, 2001) and more recently have been 

extended to the case of longitudinal data (Glas, et al., 2009; te Marvelde, et al., 2006). 

While these are important and exciting developments, they require specialized software 

and expertise. It will be interesting to develop a framework for DIF detection that incor-

porates these hierarchical models and to compare them to the approach illustrated here. 

The two stage approach taken by our algorithm implicitly ignores measurement error by 

using the scores and ignoring their standard errors. Further refinements to our algorithm 

could include incorporating the standard errors, following approaches used in the plausi-

ble values framework (Mislevy, Beaton, Kaplan & Sheehan, 1992). The structural equa-

tion modeling framework and other single step procedures elegantly propagate measure-

ment error through to other stages of the model, while two-stage procedures such as ours 

would need to incorporate specific attention to measurement error to ensure that it was 

not driving results. Such a structural equation modeling approach would also need to 

account for correlations of item residuals across time points. 

The second challenge we faced was accounting for the within person covariation of 

ability estimates across time. Longitudinal extensions of ordinal logistic regression have 

been less well developed than extensions appropriate for other forms of regression 

(Feldman, Masyn, & Conger, 2009). We chose a technique that was easily implemented 

in Stata, which was to cluster on person within Stata's ordinal logistic regression frame-

work. Another choice would have been to use structural equation modeling approaches 

to these sorts of data (Feldman, et al., 2009), though that approach would require addi-

tional modification to account for categorical data (Preacher, Zyphur, & Zhang, 2010). 

The clustering approach we adopted here is based on specific assumptions related to the 

equally spaced intervals and limited numbers of time points. 

The third challenge we faced was the “problem” of having increased power to identify 

negligible differences as statistically significant DIF. In previous studies we have found 

that altering the sensitivity of the threshold used to identify DIF may change the number 

of items identified with DIF, but tends to have limited effect on DIF impact (Crane, 

Gibbons, et al., 2007). This somewhat counter-intuitive finding can be explained as 

follows. With a very stringent DIF detection threshold, only items with the most egre-

gious amounts of DIF will be identified; these items will have the greatest impact on 
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people's scores when we account for DIF. With a more lenient threshold, items with the 

most egregious amounts of DIF will still be identified, but so too will be items with 

smaller amounts of DIF. These items with smaller amounts of DIF will not have much 

impact on people's scores. The need to have sufficient items to anchor the scale when 

accounting for DIF led us to modify the sensitivity of our DIF detection thresholds quite 

a bit, especially for DIF related to education, which necessitated a p-value threshold of 

510
-8

. When we incorporated longitudinal data, our power to detect DIF increased. In 

this situation, miniscule and irrelevant differences are increasingly likely to be identified 

as statistically different from 0. This is not a problem in our algorithm when detecting 

DIF. However, when accounting for DIF, we use demographic group-specific item pa-

rameters, and the scale is anchored by items deemed not to have DIF. Had we used nom-

inal levels for tests of statistical significance to identify items as having DIF, for educa-

tion in particular, all of the items would have been declared to have DIF, resulting in an 

unanchored scale when we generated scores that accounted for DIF. The longitudinal 

DIF detection framework magnified the relevance of this challenge, as we ended up with 

a DIF threshold of 510
-16

 for education.  

We have developed a framework for thinking about cross-sectional DIF impact at the 

level of individuals and groups. In the present paper, we extended that framework to the 

case of longitudinal data. Here, we found that DIF had moderate effects on differences in 

cognitive functioning across groups defined by educational attainment. 

In summary, we have extended our OLR/IRT framework to address DIF using longitudi-

nal data, and discussed several of the challenges of these sorts of analyses. Future efforts 

will further extend this line of research. 
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