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Abstract

The number of factors in exploratory factor analysis is often determined with tests of model fit.

Such tests can be employed in two different ways: Tests of global fit are used to compare factor

models with increasing number of factors against a saturated model whereas tests of relative fit

compare factor models against models with one additional factor. In both approaches, the number

of factors is determined by choosing the simplest model that is not rejected by the test of model fit.

Hayashi, Bentler, and Yuan (2007) recommend using tests of global fit because the tests of relative

model fit tend to overfactoring. We investigate the performance of the tests of relative model fit.

Overfactoring is prevented by using either a bootstrap implementation or a modification of the

standard tests. The modification consists in testing each model against a restricted alternative that

is identified under the null hypothesis. Simulation studies suggest that our tests of relative model

fit perform well. Both implementations adhere to the nominal Type-I error rate closely and are

more powerful than the tests of global fit. The application of the tests is illustrated in an empirical

example.
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Introduction

Factor analysis was developed more than a century ago (Cudeck & MacCallum, 2007)

and has become one of the most popular statistical methods in psychology since then

(Costello & Osborne, 2005; Fabrigar, Wegener, MacCallum, & Strahan, 1999; Golino

& Epskamp, 2017). Foremost, factor analysis is used for identifying the underlying

dimensions of instruments that aim at measuring latent constructs such as personality

and intelligence (e.g., Carroll, 1993; Furr & Bacharach, 2014; Hopwood & Donnellan,

2010). In particular, factor analysis is used for identifying how many dimensions (i.e.,

number of factors) are needed to describe individual differences (e.g., structural models

of broad and narrow personality traits) and for assessing whether theoretical model

assumptions converge with empirical data. We will refer to this as the “number of factors

problem”. Frequently, the number of factors is determined by informal techniques that

lack a sound statistical basis (Hayashi et al., 2007). However, there are scenarios in which

two alternative factor solutions seem feasible such that a rigorous statistical comparison

is required. In this study, we examine such approaches on basis of simulation studies and

empirical data to extend the knowledge on determining the number of factors in factor

analysis.

Factor Analytic Approaches and the Estimation of the Number of

Factors

Two types of factor analysis are distinguished, exploratory factor analysis (EFA) and

confirmatory factor analysis (CFA; Mair, 2018), which differ in their aims. EFA aims at

finding a factor solution that describes the data well whereas CFA aims at evaluating

whether an a-priori assumed factor structure and its implied covariance matrix are

compatible with the observed covariance matrix. EFA and CFA differ mathematically

in the way the factor loadings are restricted (Amemiya & Anderson, 1990) but both

forms are interwoven. EFA is typically used for identifying potential factor solutions that

describe the data well and CFA contributes to further validating the assumed structure

(e.g., Furr & Bacharach, 2014). Here, the focus is entirely on EFA.

In EFA, the first and probably most fundamental research question refers to the number

of factors to extract. This question has been addressed with different approaches in the

past. Some of these approaches are based on the eigenvalues of the correlation matrix.

Popular examples are the Kaiser criterion (Guttman, 1954; Kaiser, 1960), the scree test

(Cattell, 1966; Lorenzo-Seva, Timmerman, & Kiers, 2011; Raiche, Walls, Magis, Riopel,

& Blais, 2013; Zhu & Ghodsi, 2006), and parallel analysis (Green, Xu, & Thompson,

2018; Horn, 1965; Ruscio & Roche, 2012). However, those have been criticized (e.g.,

Furr & Bacharach, 2014; Goretzko, Pham, & Bühner, 2019); for example, the Kaiser

criterion tends to overestimate the number of factors and the visual inspection of scree

plots tends to rely on researchers’ degrees of freedom in interpreting the cut-off. Other

approaches are based on the indicators’ intercorrelations that remain when the influences
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of the common factors have been partialled out (e.g., the Minimum Average Partial

Correlation Test; Velicer, 1976) or exploratory graph analysis (Golino & Epskamp, 2017).

Measures of model fit that describe how well a model represents the covariance matrix

of the indicators, are also commonly used. In using them one chooses the factor model

with the lowest number of factors that has still acceptable fit (e.g., Montoya & Edwards,

2020), compares the relative fit of different factor models (Akaike, 1992; Finch, 2019;

Huang, 2017; Schwarz, 1978), or evaluates whether the loading matrix has a simple

structure (Revelle & Rocklin, 1979; for an overview see e.g., Preacher, Zhang, Kim, &

Mels, 2013). A discussion of the merits and drawbacks of the different approaches can

be found in Furr and Bacharach (2014) and Goretzko et al. (2019).

In our study, we focused on two popular procedures that are based on statistical tests

of model fit. The first procedure is based on tests of global model fit, which assess the
compatibility of the implied covariance matrix with the empirical covariance matrix (e.g.,

Amemiya & Anderson, 1990; Bartlett, 1950; Foldnes, Foss, & Olsson, 2011; Lawley,

1943; Rao, 1955; Shapiro, 1986). These tests can be interpreted as a comparison between

a specific factor model and a saturated factor model that is capable of reproducing the

sample covariance matrix perfectly. Tests of global model fit can be used in order to

identify the number of factors by testing several factor models with increasing number

of factors. Among all factor models with an insignificant test result, the factor model

with the lowest number of factors is chosen. Secondly, tests of relative model fit (Steiger,
Shapiro, & Browne, 1985) compare the global fit of two nested models and assess

whether the global fit of the two models differs systematically. Tests of relative model

fit can be used for determining the number of factors by comparing models of increasing

dimensionality: Beginning with a comparison of a 1- vs 2-factor model, one successively

increases the number of factors until the test of relative model fit is insignificant. Since

determining the number of factors can be interpreted as a model selection problem

(Preacher et al., 2013), assessing relative fit seems the preferred approach. The fact that

tests against specific alternatives are more powerful than tests against global alternatives

additionally suggests using relative tests (Saris, Satorra, & van der Veld, 2009).

Model selection on basis of tests of relative model fit and all related model selection

criteria is problematic because the regularity conditions assumed in maximum likelihood

(ML) theory are violated when a factor model is tested against a model with a higher

number of factors (see the next section for a more detailed description). In this case, the

tests of relative model fit are liberal and, thus, simpler models are rejected too frequently,

and the number of factors is overestimated. For this reason, Hayashi and colleagues

(2007) recommend using the tests of global fit for the determination of the number

of factors. We question this recommendation. In our study, we show that the tests of

relative model fit can be used to determine the number of factors provided that they are
implemented adequately. We suggest two solutions to the problem of overfactoring. The

first solution is a modification of the test of relative model fit. Instead of comparing

a factor model with an underidentified factor model with additional factors, we use

an alternative model that is identified under the null hypothesis and provides a good
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approximation to a factor model with one additional factor. The second solution consists

in a parametric bootstrap. In the following, we describe the two solutions in more detail

and investigate their performance with respect to their size and power in a simulation

study. Finally, we illustrate their application with real data.

Two Implementations of the Test of Relative Model Fit

In the test of relative model fit that are considered here, one compares a factor model

with an extended version that contains one additional factor. No assumptions are made

about the loadings of the additional factor. For the test, both models are fitted to the

data, either via ML or Weighted Least Squares (WLS) estimation. In doing so, one

determines those values of the model parameters that make the implied covariance matrix

as similar to the observed covariance matrix as possible. The similarity of the two

matrices is assessed with a discrepancy function that differs in ML and WLS estimation

(Shapiro, 1986). The test of relative model fit is based on the values of the discrepancy

function at the parameter estimates of the two models. If the factor model with the

smaller number of factors holds exactly in the population, the two discrepancy values do

not differ systematically. If the model with the additional factor holds, its discrepancy

value is systematically lower. The scaled difference of the two discrepancy values

provides a test statistic that is compared to a χ2 distribution to evaluate its statistical

significance. Although the test statistic is approximately distributed according to a

central χ2 distribution under the null hypothesis in CFA, this is not the case in EFA

since the model of higher dimensionality is underidentified when the model of lower

dimensionality holds. As the loadings of the additional factor are all zero in that case, the

matrix of factor loadings does not have full rank. This violates the regularity conditions

assumed in ML theory (Amemiya &Anderson, 1990; Geweke & Singleton, 1980). When

the χ2 distribution is used notwithstanding, the test becomes liberal (Hayashi et al., 2007).

We suggest two solutions to this problem, based on (1) a model restriction and (2) a

parametric bootstrap.

The Restricted Model Approach

Comparing a factor model withm factors (H0-model) against a factor model withm+ 1

factors (H1-model) using a test of relative model fit is problematic. When theH0-model

holds, the loading matrix of the H1-model does not have full column rank. This can

be avoided by testing the H0-model against an alternative H1-model. The alternative

H1-model has to be identified under the null hypothesis (loading matrix of full column

rank) and should provide a good approximation to the original H1-model. Such an

alternative H1-model can be generated with the original H1-model by restricting one

specificity (i.e., specific variance) to zero. An example might help to clarify this: When a

1-factor model is tested against a 2-factor model, one could, for example, test the 1-factor

model against the factor model given in Figure 3 (observable indicators are denoted

as x1, x2, . . . , xP , factors as θ1 and θ2, and the residuals as ε1, ε2, . . . , εP ). For model
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identification, the loading of x1 on θ2 is set to zero (Algina, 1980). The restriction of the
path ε2 − x2 restricts the specificity of x2 to zero, which prevents that the loading matrix
is rank-deficient when the H0-model holds. In this case, the second factor takes over

the role of the residual (specific factor) ε2. The loadings of θ2 in all further indicators
will be estimated close to zero. When the H0-model is wrong as the H1-model with the

additional factor holds, the model in Figure 3 is misspecified. The parameter estimates

of the restricted model converge to those values that provide the best approximation to

the covariance matrix implied by the true 2-factor model. As the misspecification is only

local, the correctly specified part of the model becomes dominant in longer tests; note

that the number of covariances increases quadratically with the number of indicators. As

a consequence, the loadings of the second factor will deviate from zero.

Figure 3

Restricted Exploratory Two-Factor Model with Specificity of Zero in the Second Indicator. Note.
The loading of the first indicator on the second factor is restricted to zero to prevent the rotational

indeterminacy of the model.

We suggest the following procedure to determine dimensionality. Starting from a com-

parison of a 1-factor model against a 2-factor model, one compares adjacent models with

increasing number of factors consecutively. In each step, a model withm factors is tested

against the adjacent model withm+ 1 factor as follows: First, the model withm+ 1

factors is fitted to the data with the restriction described above. For reasons given below,

we suggest using the diagonally weighted least squares (DWLS) estimator. Having fitted

the model, aWald test is used to examine whether all loadings of the (m+1)-th factor are
zero. In doing so, the loading of the indicator with zero specificity is excluded. Models

of increasing number of factors are compared until the first test is insignificant. The

number of factors of the more parsimonious model is then considered as the true number.

We prefer DWLS over ML estimation because in DWLS one can control the impact the

elements of the covariance matrix have on the parameter estimates by modifying the

corresponding elements of the weight matrix. This allows to increase the power of the

test. We suggest reducing the weight of the variance of the indicator with the restricted

specificity, which reduces the impact of the misspecification of the restricted H1-model

under the H1-hypothesis. A reasonable choice is to set the weight to 20% of its original

value. The power of the test depends on the choice of the indicator whose variance is
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set to zero. This is similar to the effects of the chosen identification restriction that is

also known to affect the power of the tests of model fit (Millsap, 2001). We recommend

choosing an indicator with low specificity.

The Bootstrap Approach

Bootstrapping is a viable approach to statistical inference in case this is difficult otherwise;

for a general treatment of the bootstrap see Efron and Tibshirani (1993) and Davison

and Hinkley (1997). Since its introduction into Structural Equation Models (Beran &

Srivastava, 1985; Bollen & Stine, 1993), the bootstrap has been used for parameter

inference (e.g., Boomsma, 1986; Lambert, Wildt, & Durand, 1991; Yuan & Hayashi,

2006), the evaluation of model fit (e.g., Cheng &Wu, 2017; Nevitt & Hancock, 2001;

Yuan & Hayashi, 2003; Yung & Bentler, 1996; Zhang & Savalei, 2016), and power

analyses (Yuan & Hayashi, 2003). The bootstrap is a resampling approach, that uses

the distribution of estimators or test statistics over bootstrap samples as a proxy of the

theoretical distribution. Depending on how the bootstrap samples are generated, two

versions can be distinguished, the nonparametric bootstrap and the parametric bootstrap.

In the nonparametric bootstrap, the bootstrap samples are generated by random draws

with replacement from the original sample. The nonparametric bootstrap is used when

the multivariate normality of the data is questionable. In the parametric approach, the

bootstrap samples are generated with a standard distribution, typically the multivariate

normal distribution. The parametric bootstrap is used in small samples when the data

are not a good proxy of the true distribution function (for a critical review see Yung

& Bentler, 1996). Here, we will employ the parametric bootstrap in order to compare

the fit of anm-factor model against anm+ 1-factor model which has – at least to our

knowledge – not been done before.

In a first step, anm-factor model is fitted to the data of the original sample. Denote the

sample size as n and the implied covariance matrix of the fitted factor model as Σ̂(m).
Having fitted the model, one generates a large number of bootstrap samples of size n.
Each bootstrap sample is generated by n independent random draws from a multivariate

normal distribution with a mean of zero and covariance matrix Σ̂(m). That way, B
bootstrap samples are generated. To all bootstrap samples, factor models withm factors

andm+ 1 factors are fitted. The relative model fit is assessed via a likelihood ratio (LR)

test that compares the models withm andm+ 1 factors. The distribution of the LR test

statistic over the bootstrap samples is finally used to determine the rejection region of the

test. In the simplest case, one uses a quantile of the bootstrap distribution as the critical

level. With the bootstrap test of relative model fit, the number of factors is determined

as described above. Starting from a comparison of a 1-factor against a 2-factor model,

one successively increases the number of factors until the first test is not significant. The

number of factors of the more parsimonious model is then considered as the true number

of factors.
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Study 1 (Simulations)

We conducted two simulation studies to evaluate the proposed approaches. First, we

evaluated the tests of model fit with respect to their nominal Type-I error rate (Study 1a).

Then, we assessed their power (Study 1b).

Simulation Study 1a

In the first simulation study, the same model was used for generating and analyzing

the data. Two simulation conditions were considered. In the first simulation condition,
the data were generated according to a 1-factor model as follows. For each fictitious

test taker, a factor score was drawn from the standard normal distribution. Individual

responses were then generated according to a factor model with normally distributed

residuals. In line with previous simulation studies (Hayashi et al., 2007; Hu & Bentler,

1999), the loadings were set to 0.707 in half of the indicators and to 0.816 in the remaining

ones. The variances of the residuals were chosen such that the variances of the indicators

were 1. The chosen parameter values implied communalities of .50 and .66. Simulation

samples were generated for a test with 12, 24, or 36 indicators. The sample size was

n = 125, n = 250, and n = 1000. For each of the 3× 3 combinations of test length and

sample size, 500 simulation samples were generated. In the second simulation condition,

the data were generated according to a 2-factor model. Factor scores were randomly

drawn from a standard bivariate normal distribution with covariance of zero. Residuals

were assumed to be normally distributed. The loading matrix of the 2-factor model had a

simple structure. Half of the indicators had nonzero loadings on the first factor and half

of the indicators had nonzero loadings on the second factor. The loadings on each factor

alternated between the values 0.707 and 0.816 for indicators with non-zero loadings. The

chosen parameter values implied communalities of .50 and .66. As in the first simulation

condition, we considered three different lengths of the test (12/24/36 indicators) and

three sample sizes (n = 125/250/1000). For each of the 3 × 3 combinations of test

length and sample size, 500 simulation samples were generated.

Three factor models were fitted to the simulated samples. First, we fitted an unrestricted

factor model with the correct number of factors to the data via ML estimation. Here,

as well as in the following, we denote models as unrestricted when no restrictions are

made beyond the ones required to scale the latent variables and to prevent rotational

indeterminacies. Second, we fitted an unrestricted factor model with one additional

factor via ML estimation. Finally, we fitted a restricted factor model with one additional

factor via DWLS estimation. The restriction consisted in setting one specificity to zero,

as described in the previous section. The weight matrix of the DWLS estimator was

modified by reducing the weight of the variance in the indicator with zero specificity

by 80%. When estimating the models, the residual variances were restricted to be

non-negative (see Savalei & Kolenikov, 2008).

Having fitted the models, several tests of model fit were performed. The first test was a

LR test of relative model fit that compared the baseline model against the model with
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one additional factor. This is the liberal test that was criticized by Hayashi et al. (2007).

The LR test of relative model fit was also implemented in a parametric bootstrap version.

The second test was the LR test of global model fit that compares the baseline model

against a saturated model that is capable of reproducing the sample covariance matrix

perfectly. We considered the test in its standard implementation and in Bartlett’s (1950)

corrected version. Finally, we examined the Wald test that tested whether the loadings of

the additional factor all deviate from zero. For this test, we used the DWLS estimates

from the restricted model. Loadings were excluded when they were set to zero for sake

of identification or when they corresponded to the indicator with specificity of zero. An

overview of the tests is given in Table 7.

Table 7

Overview of the Tests Considered in the Simulation Study

Label Estimator Test Comparison Approach

LR-C ML LR m-Factor vs. (m+ 1)-Factor Model Standard

LR-B ML LR m-Factor vs. (m+ 1)-Factor Model Bootstrap

LR-S ML LR m-Factor vs. Saturated Model Standard

LR-S’ ML LR m-Factor vs. Saturated Model Bartlett

Wald-R DWLS Wald Loadings of (m+ 1)-th Factor against Zero Standard

Note. ML = Maximum-Likelihood. DWLS = Diagonally Weighted Least Squares. LR =

Likelihood-Ratio.

All tests were performed on α = .01, α = .05, and α = .10. The empirical rejection
rates are reported in Table 8 for data sets with a one-factor structure and in Table 9 for

data with a two-factor structure. Note that the empirical rejection rate should be close to

the nominal Type-I error rate α.

With respect to the LR-C test and the LR-S’ test, our findings (see Table 8 and 9) are

similar to those of Hayashi and colleagues (2007). The LR-C test is liberal and exceeds

the nominal Type-I error rate tremendously. It amounts up to 0.988 in samples of n = 125

subjects and I = 36 indicators. The poor performance, however, is universal, and not

related to unfavorable conditions like small samples and long tests. The LR-S’, on the

other hand, closely adheres to the nominal Type-I error rate. The good performance of

the test is partly due to the Bartlett correction. The standard LR-S test without correction

is less well behaved and tends to be liberal in small samples and long tests. The LR-B

performs well in all conditions. The Wald-R test performs less well. It is too liberal

in samples of n = 125 and n = 250 subjects, irrespective of the number of indicators.

However, the test performs well in samples of n = 1000 subjects. In most conditions—

the case of 24 indicators and 125 subjects being an exception—the Wald-R test performs

better than the standard LR-S test.
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Table 8

Type-I Error Rates of Tests of Model Fit for Different Levels (α), Sample Sizes (n) and Number
of Indicators (I)When Testing the Fit of a Factor Model with one Factor
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Simulation Study 1b

In the second simulation study, we investigated the power of the tests. Data were

generated for a test comprising I = 24 indicators and n = 250 subjects, as these were
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Table 9

Type-I Error Rates of Tests of Model Fit for Different Levels (α), Sample Sizes (n) and Number
of Indicators (I)When Testing the Fit of a Factor Model with two Factors
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the conditions under which most tests of model fit adhered to the Type-I error rate in Study

1a. In order to investigate the power, the model used for data analysis was misspecified.

We considered different forms of misspecification in two simulation conditions.



Determining the Number of Factors in Exploratory Factor Analysis 55

The first simulation condition was similar to Study 1a. We, however, replaced each factor

by two factors with a correlation coefficient of ρ = 0.95. The 1-factor model of the first
simulation condition in Study 1a was replaced by a model with two oblique factors and

a simple structure. The loadings of the factors were identical to the loadings of Study

1a (0.707 and 0.816 in half of the indicators each). The 2-factor model of the second

simulation condition in Study 1a was replaced by a factor model with four oblique factors

and simple structure. The four factors could be grouped into correlated pairs. Factors

in different groups were uncorrelated. The loadings were identical to Study 1a. By this

proceeding, we increased the number of factors without changing the uniqueness of the

indicators in comparison to the first simulation study. A correlation of ρ = 0.95 was
chosen in order to simulate a difficult detection problem.

In the second simulation condition, we assumed an additional local factor. The data

were generated similar to Study 1a with one exception. In addition to the one or two

factors of the original model, we introduced an additional local factor. The local factor

was uncorrelated with the main factors of the model and had loadings of 0.30 on the last

three indicators. The data had thus a two dimensional or a three-dimensional structure

depending on the condition.

Data were generated as described in the previous section. For each condition, 500 samples

were simulated. The data that were generated with a 2-factor model, were analyzed with

a 1-factor model; the data that were generated with a 3-factor or 4-factor model, were

analyzed with a 2-factor model. The models were fitted to the data as in the previous

section. Then, the tests of model fit were performed. In the second simulation study, we

only considered the LR test of global model fit in the version of Bartlett (LR-S’), the test

of relative model fit with bootstrapped p-values (LR-B), and the Wald test based on the

DWLS estimates of the restricted model (Wald-R). We did not consider the remaining

tests because they were liberal. All tests were performed on α = .01, α = .05, and
α = .10. For both simulation conditions, the rejection rates of the tests (power) are
reported in Table 10.

The LR-S’ test of global model fit that was recommended by Hayashi et al. (2007) has

high power in the first simulation condition and moderate power in the second simulation

condition, irrespective of the number of factors. The power, however, is comparatively

lower than the power of the LR-B test. The bootstrap test of relative model fit (LR-B)

performs much better in both simulation conditions. The bootstrap test is so powerful

that the misspecified factor structure is detected in almost all samples with α = .10.
Findings are mixed in data generated with two factors. The Wald test is rather powerful

in the first simulation condition but lacks power in the second. This might be due to the

weak effects of the local factor that are not strong enough to overpower the variance

restriction.
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Table 10

Power of Tests of Model Fit to Detect Additional Factors for Different Factor Models, Levels of α
and two Forms of Misspecified Factor Structure

Data: Two Factors / Model: One Factor

Correlated Factors Local Factor

Test α = .01 α = .05 α = .10 α = .01 α = .05 α = .10

LR-S’ .524 .740 .828 .236 .512 .614
LR-B .948 .982 .988 .714 .846 .908
Wald-R .802 .832 .848 .098 .146 .194

Data: Three or Four Factors / Model: Two Factors

Correlated Factors Local Factor

Test α = .01 α = .05 α = .10 α = .01 α = .05 α = .10

LR-S’ .198 .444 .572 .272 .494 .614
LR-B .338 .562 .678 .642 .788 .862
Wald-R .320 .386 .458 .160 .192 .260

Note. Results are based on 500 simulation samples; a description of the tests is
given in Table 7.

Study 2 (Empirical Application)

We examined the performance of the tests by analyzing openly available real-life data

(Price, 2012). The data set contained scores of 1,000 participants (53.3% females; age:

M = 46.4, SD = 23.8 years) in seven tests of intelligence. Previous analyses suggested
that the data were compatible with a 2-factor model (i.e., supposedly representing the

domains of crystallized and fluid intelligence). Here, we reanalyze the data in order to

investigate whether the introduced tests would support this conclusion.

For this purpose, we fitted unrestricted 1-factor, 2-factor, and 3-factor models (ML

estimation) as well as restricted 2-factor and 3-factor models (DWLS estimation) to the

data. We then performed the tests described above. Each of the unrestricted factor models

was tested for global fit with the standard test (LR-S) and with the modified Bartlett test

(LR-S’). To assess the fit, the unrestricted 1-factor model was compared to the unrestricted

2-factor model and the unrestricted 2-factor model to the unrestricted 3-factor model.

This was achieved by the (incorrect) standard test (LR-C) and the implementation with

bootstrapped p-values (LR-B). For the restricted 2-factor and 3-factor model, we tested
whether the free loadings on the last factor deviated significantly from zero (Wald-R).

Results for the tests are displayed in Table 11.

All tests clearly reject the hypothesis that one factor is capable of modeling the covariance

matrix. The Wald-R test has the highest test statistic and the lowest degrees of freedom.

The 2-factor model is not in conflict with the data. None of the tests can be rejected on
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Table 11

Test Statistic (χ2), Degrees of Freedom and p-Values of the Tests When Testing the Global and

Relative Fit of Factor Models with Different Number of Factors

Factors

1 2 3

Test χ2 df p χ2 df p χ2 df p

LR-C 494.07 6 <.001 7.44 5 .189 – – –

LR-S 503.53 14 <.001 9.47 8 .305 2.02 3 .567
LR-S’ 501.10 14 <.001 9.41 8 .309 2.01 3 .569
LR-B 494.07 – <.001 7.44 – .296 – – –

Wald-R 862.07 5 <.001 8.08 4 .088 – – –

Note. n = 1000; a description of the tests is given in Table 7.

α = .05. The Wald-R test has again the lowest p-value. It has almost the same value
than the standard tests of relative model fit, but fewer degrees of freedom. The bootstrap

version of the test of relative model fit is more similar to the tests of global model fit.

Taking all findings together, there is little support that a 3-factor model is superior to

a 2-factor model with respect to model fit. Given the high power of the new tests, this

further supports the notion that only two latent constructs are measured.

Discussion

Determining the number of factors is the first and most important question in EFA. To

address this problem, numerous approaches have been suggested. Although several of

these approaches work well in practice, only few have a sound statistical basis (Fabrigar

et al., 1999; Hayashi et al., 2007; Schmitt, 2011). Among them are the tests of model fit

that evaluate whether the observed covariance matrix is compatible with the assumed

factor model.

There are two different ways to employ the tests of model fit in order to identify the

underlying number of factors. The first way consists of testing factor models with

increasing number of factors against the saturated model that is capable of reproducing

the observed covariance matrix perfectly. The simplest model capable of representing

the covariances is chosen as the correct model. The second way consists in comparing

a factor model against an extended model with one additional factor. The number of

factors is increased until the extended model’s fit does not significantly differ from the

reduced model’s fit. In both procedures, the problem of multiple conditional testing is

ignored.

Theoretical considerations and empirical findings suggest that only the first procedure

is justifiable when the standard LR test is used. The second procedure is problematic
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as tests of relative model fit based on the standard LR test do not perform regularly

because the matrix of the factor loadings is rank-deficient under the null hypothesis;

note that this complication not only impairs the tests of relative model fit. Practically all

approaches based on the χ2 approximation (e.g., RMSEA) or the asymptotic theory of

ML estimation will be affected (Huang, 2017). For this reason, Hayashi and colleagues

(2007) recommend using tests of global fit. This recommendation is partly supported by

our simulation studies. As the tests of global fit control for the Type-I error rate well,

the procedure guards against overfactoring. A drawback of the tests of global fit is the

rather unspecified alternative hypothesis. This is disadvantageous for the power of the

tests. High power, however, is very important in the present context. Due to the nature

of the hypothesis, a nonsignificant test of model fit does not necessarily imply that the

model is capable of representing the data (Yuan, Chan, Marcoulides, & Bentler, 2016).

A nonsignificant test result is only informative when the test has sufficient power against

a relevant set of alternative models.

In this paper, we investigated the performance of tests of relative fit. Overfactoring

was prevented by two approaches: First, by bootstrapping the distribution of the test

statistic. Although we used a parametric bootstrap, one could also use the model-based

nonparametric bootstrap (Bollen & Stine, 1993), at least in large samples (Ichikawa

& Konishi, 1995). Secondly, by testing a factor model against a restricted version of

the model with one additional factor. The restriction was chosen such that the model is

identified under the H0-hypothesis and provides an approximation to the unrestricted

factor model with one additional factor. The performance of the two approaches was

investigated in a simulation study. The study corroborates that tests of relative model fit

perform better than tests of global model fit when implemented adequately. Using the

bootstrap test for the relative model comparisons results in very high power. Under some

conditions, the rejection rates of the bootstrap test are four times higher than the rejection

rates of the test of global model fit. Findings are less promising for the test against the

restricted H1-model. Although this test is powerful in models with an additional global

factor, it has low power in a model with an additional local factor. From a mathematical

point of view, this is clearly a disadvantage. From a practitioner’s perspective, one can

debate whether the detection of a local factor is wanted. Tests should be powerful against

relevant alternatives. The restricted test is constructed in such a way that only global

factors can be detected. Hence, it might test for precisely the alternative one is interested

in. The relation between the power for a specific hypothesis and the way the restriction

is implemented, however, needs further investigation.

We want to note two potential limitations. First, our simulation study was limited with

regard to the assumption of comparatively high loadings. We chose this scenario in

line with previous simulation studies (Hayashi et al., 2007; Hu & Bentler, 1999). The

simulation study should be supplemented by further simulation studies in which factor

loadings are varied and also cover a lower range of loadings (Themessl-Huber, 2014).

We also did not consider alternative tests of relative model fit like, for example, the

F -test employed by Kubinger, Litzenberger, and Mrakotsky (2006; see also Themessl-
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Huber, 2014). Second, although we have demonstrated that a series of local model

comparisons has higher power than a series of global model comparisons, this is foremost

a mathematical advantage. Whether the gain in power has relevance in practice, where

all models are probably false, is uncertain. It has to be noted that the capability to

consistently reject a H0-hypothesis when it is false and the sample increases beyond

bound is not a defect of hypothesis testing but a strength, provided the right question has

been posed. Although perfect model fit is unrealistic and every model can be rejected with

a sufficiently large sample size, this does not invalidate model testing in general. When

am-factor model has been rejected, it is always possible to test them-factor model for

approximate model fit. One could, for example, test whetherm andm+1-factor models

differ by a certain amount. The bootstrap method of Yuan and colleagues’ (2007) might

be used for this by combining the two implied covariance matrices when bootstrapping

the distribution of relative model fit tests. Alternatively, one could simply test whether

the loadings of one factor are greater than a certain threshold. This, however, requires

that the loading matrix is rotated tom dominant factors and one minor factor.

A practical implication of our findings concerns the widespread strategy of justifying

multidimensionality of assessment instruments. Frequently, a proposedm-factor model

is tested against a restricted 1-factor model in order to justify the assumption of 1+m
dimensions but without stepwise comparisons. This procedure tends to overproduce

significant results that indicate the rejection of the lower-dimensional model due to

the comparatively high sensitivity of the tests and, thus, leads to the assumption of the

multidimensional H1-model. However, based on our findings, we suggest that stepwise

comparisons (i.e., comparing 1-, 1 + m-, 1 + m + 1-factor models etc.) should be

considered when one is interested in whether a model of lower dimensionality is better

suited than a proposedm-factor model.

In conclusion, the search for the number of factors is a problemwithmany facets (Preacher

et al., 2013). Results from statistical tests of model fit are only one aspect that should be

considered. This, however, does not signify that the statistical techniques do not have

to be mathematically sound or that researchers are given a carte blanche to abandon
good statistical practice. When tests of model fit are considered, they should adhere

to the nominal Type-I error rate and be as powerful as possible. The testing strategies

suggested here might be such methods.
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