
Psychological Test and Assessment Modeling, Volume 58, 2016 (1), 15-30

Treating all rapid responses as errors (TARRE)
improves estimates of ability (slightly)

Daniel B. Wright1

Abstract

Response times can be modeled along with response accuracy to estimate ability. Models that

do not use response times were compared with three models that do. The predictive accuracy of

the models were assessed using leave-out-one-item cross-validation where for a k item test each

method is used k times with k−1 items to create ability estimates and these estimates are used to

predict responses on the remaining item. The conceptually simplest method using response times,

which treats all rapid responses as errors (TARRE), produced the most predictive values. However,

the increase was less than would be achieved by having one extra item on the test. Possible effects

of changing the scoring algorithm on student test taking behavior need to be explored before

implementing any such a change.
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I was always deeply uncertain about my own intellectual
capacity; I thought I was unintelligent. And it was true that I
was, and still am, rather slow. I need time to seize things . . .
(Schwartz, 2001, p. 30)

A young Frenchman, Laurent Schwartz enjoyed mathematics. While he got good grades,
it took him a long time to understand what his mathematics teachers were saying. The
relationship between speed and ability is much researched within cognitive science. For
within-subject comparisons there is a speed-accuracy trade-off (Luce, 1986) whereby if
individuals speed up their responding to individual items, this lowers their accuracy on
these items. Comparisons between different people are more difficult. While it is clear
that if one person rapidly answers “20” to the prompt 4×5 and another person counts
fingers and toes, that the first person has been using a more advanced arithmetic skill,
the case of Schwartz highlights that speed is not necessary for mathematics greatness.
The Fields Medal (often described as the Nobel Prize for mathematics) winner argued
“being quick or slow isn’t really relevant” (p. 31). The goal of this paper is to examine if
response speed can help to assess ability.

Many standardized tests are now administered on computer, allowing response times
to be recorded. While there are yet-to-be-resolved issues about these values (e.g.,
what happens when students go back and forth between questions?, are the values
equally reliable on tablets and desktop computers?), testing organizations are now
considering what should be done with these values. It is agreed that response times
provide information about the cognitive processes occurring while responding (Luce,
1986), and therefore they are being used for test development and research. More
controversial is whether the response times should be used to estimate ability and
therefore be part of the algorithms used to generate test scores.

When students take a multiple choice standardized test, it is common to treat the data
as 0s (incorrect) and 1s (correct) and to use item response models to estimate ability,
usually denoted θ .1 These are estimated; they are measured with error. Because of
this, if response times also are in part related to true ability, then they could lessen this
measurement error. Novick and Jackson (1974) described this as collateral information.
For example, someone with very low ability may rapidly guess and get a response correct
by chance. Incorporating response time into the estimation of the ability estimates could
improve the estimation.

Using response times to estimate θ could affect students’ response strategies. Given
that for high-stakes tests like the ACT R© and SAT R©, students often take courses to

1Item response models have also been adapted for partial credit and other response types.
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improve their scores, it is likely that if testing organizations penalized certain responses
based on how quickly the responses were made, then these courses would take this into
account. This could affect students’ strategies and have unintended consequences. These
consequences should be examined prior to implementing any change to the scoring the
algorithm and are discussed further at the end of this paper.

Models examined

Item response theory

Item response theory (also called item response models and latent trait models) is often
used to estimate the ability of students by assuming the probability of a correct response
follows a specific function of the students’ ability and characteristics of the items. Let θi
be the ability of the ith student. Multiple θs are sometimes used if the test is measuring
multiple constructs, though here only uni-dimensional person models will be considered.
Common uni-dimensional models are referred to as the 1PL–4PL models for the number
of item parameters in the logistic model (for an introductory book see Embretson & Reise,
2000; for introductory articles see Harris, 1989; Wright & Skagerberg, 2006; Zicker,
1998; for relating these to other latent variable models see Chapter 4 of Bartholomew,
Knott & Moustaki, 2011). Different notations are often used for these models. Here the
notation is based on Embretson and Reise (2000, p. 71). For example, the 3PL equation
is:

P(correcti j) = c j +(1− c j)
ea j(θi−b j)

1+ ea j(θi−b j)
, (1)

where a j is the discriminability (sometimes a scalar is included), b j is the difficulty,
and c j is a guessing parameter, all for the jth item. For the 2PL, c j = 0, and for the
1PL, a j is the same for all items (and c j = 0). The 4PL includes a ceiling parameter
that is the highest probability correct for someone with the highest ability (the c j is the
same but at the lowest ability levels). The 4PL is seldom used in educational assessment
since as θ → ∞ the probability of being correct should be very near 1 if the item is
well-written.2

Several packages can estimate IRT models. Here the R package mirt (Chalmers, 2012)
is used. This package allows many alternatives and options. Unless otherwise mentioned,
the default settings for the 1PL–4PL models are used. One useful alternative for the 3PL

2A ceiling threshold is better suited for other applications. For example, modeling winning at games that
involve chance (e.g., poker) would require both floor and ceiling boundaries. If educational assessments
are based on results from so-called serious games then the 4PL might become more widely used if the
games include chance aspects.
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model is to set the floor values to a constant. Setting the floor parameter to 1/k for a
k-alternative forced choice test is often used.

Treating all rapid responses as errors (TARRE)

If somebody randomly guesses the correct answer this gives a false impression of the
person’s ability. Therefore, if a test taker spends less time than is required for a thoughtful
response then this arguably is a guess. The adjustment here is that all rapid responses are
assigned zero (incorrect) for the IRT ability estimation (though not for cross-validation
when assessing predictive accuracy). The threshold will depend on the type of questions
and sample of test takers so the choice of threshold will need to be addressed for different
circumstances.

Here, the choice of less than 10 seconds as a threshold for declaring a response as too
quick for demonstrating proper cognitive processes was informed by both of knowledge
of ACT mathematics questions and the empirical distributions. The lowest quartile
was calculated for all 20 items, and the lowest was 19 seconds. Since 9.5 seconds
would round down to 9 seconds, it means that items on this test were deemed lacking
appropriate cognitive effort if the test taker took less than half of the lower quartile of
time for the item with the lowest quartile. Wise and Kong (2005) discuss methods for
detecting low-effort responding in more detail. They consider taking into account test
taker and item characteristics. Thus, rapid answers to a question like 5×4 would not
be treated as an error for older students who likely have memorized the times tables,
but a rapid response to a lengthy mathematics word problem would be. There is an
advantage having a single threshold, however, as this could be conveyed to test takers
more easily.

An advantage of the TARRE approach is that the same analyses that would normally
be done using techniques that do not incorporate response time can still be done in a
straight-forward manner and therefore the standard diagnostic output is available.

Diffusion models

Diffusion models have long been used in physics to account for Brownian motion, but
have recently become popular in cognitive science to account for the joint distribution
of response time and accuracy in decision making. Ratcliff’s (1978) diffusion model
is the most widely evaluated and it has been adapted by many. It assumes information
either for or against the correct response is sampled (it is an example of a sequential
sampling method). A test taker with high ability would be sampling more information
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leading to the correct response than to an incorrect response; the test taker drifts towards
the correct response. Once the amount of information has reached a threshold for
responding either with the correct and an incorrect response, the test taker makes this
response. An important aspect of these models is that they are meant as descriptions
of the cognitive processes occurring when the person responds; the parameters have
psychological meaning.

Within these models the drift rate is the gradient towards a correct response and thus
this parameter is the most similar to ability from IRT (van der Maas et al., 2011).
Alternative models, for example the linear ballistic accelerator models, assume the test
taker is sampling from a multinomial distribution for each possible response (Brown &
Heathcote, 2008). Adaptions like forcing the ability estimates to be positive have also
been examined (van der Maas et al., 2011).

Most of the cognitive science research with diffusion models has been with relatively
small numbers of subjects answering a large number of items that are very similar to
each other (or differ based on an experimental factor). With educational testing the
number of test takers can be very large and the items purposefully differ in many ways.
Many of the algorithms are prohibitively slow with the sample sizes used in standardized
testing. Wagenmakers, van der Maas and Grasman (2007) produced an algorithm for a
simplified model they call the EZ diffusion model. Research comparing it with other
diffusion model adaptions has shown the EZ model works quite well (van Ravenswaaij
& Oberauer, 2009). The drift rate, v, for this model is shown in eqn. 2 (Wagenmakers et
al., 2007, eqn. 7). Pc is the proportion correct, V RT is the variance of the response times,
and s is a measure of the amount of information accumulated at each step and here is set
to .1, which is the default for Wagenmakers et al. function. Because of its simplicity it
can be used with large samples without creating computational difficulties.

v = sign
(

Pc−
1
2

)
s

{
logit(Pc)

[
P2

c logit(Pc)−Pclogit(Pc)+Pc− 1
2

]
VRT

} 1
4

(2)

An R function, adapted from http://ejwagenmakers.com/2007/EZ.R (accessed 20 January
2016), is shown below. Because Pc can equal 0 or 1 in sample data (and the quantile
logistic function below would yield −∞ and +∞, respectively), the Pc values are mul-
tiplied by .98 and .01 added to the result (their function returns these as errors, which
is not practical for educational assessments). This has the effect of shrinking values
towards .5. The function takes matrices of response times (tt) and responses (rr) and
returns the estimated drift rate.
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estv <- function(tt,rr){
s <- .1
Pc <- apply(rr,1,mean)*.98 + .01
VRT <- apply(tt,1,var)
L <- qlogis(Pc)
x <- L*(L*Pc^2 - L*Pc + Pc - 0.5)/VRT
sign(Pc-0.5)*s*x^(1/4)}

van der Linden’s Hierarchical Model

van der Linden (2007, 2011) described modeling the response accuracy and the response
latency separately, but allowing the latent variables used in the separate models to be
associated. He describes this as a hierarchical model because information about the
response accuracy and latency are informed by some higher level relationships. I will
follow his lead (van der Linden, 2011, pp. 341–342) and refer to level 1 and level 2
parts of his model. Level 1 has two models: one for the response times and one for the
responses themselves. For the response times a log-normal model is used (an alternative
being a Box-Cox normal model or a log with a starting value normal model) such that:

log(RTi j) = β j− si + εi j, with εi j ∼ N(0,α j
−2) . (3)

The model for the probability of the response being correct is an IRT model. Here, the
2PL is used:

P(correcti j) =
ea j(θi−b j)

1+ ea j(θi−b j)
. (4)

Level 2 allows associations between the latent variables. The covariance matrices, Σp
and Σl , describe the associations among these parameters, and the mean vectors, µp and
, µl allow differences among people and items.

The model, with 2PL (other IRT models could also be used), can also be depicted as a
directed acyclic graph (i.e., a DAG) as in Figure 1.

Fox et al.’s (2007) cirt package estimates the parameters of van der Linden’s model. It
allows several options. The response part of the model can be estimated using a 2PL or
a 3PL. The time part of the model can be estimated using both latent variables or having
the discrimination variable, α j, constant. The number of iterations was set to 5000 as
recommended in the package’s help pages.
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Figure 1: The van der Linden (2011) hierarchical model with 2PL for the response
model and 2 item parameters for modeling response time. The response time

model is shown on the left. The response accuracy model is shown on the
right.

Methods for comparing models

Several other models have been proposed that incorporate response time and accuracy.
Luce (1986) provides a thorough review of those up to 1986. Since then there has been a
more concerted effort within education. Examples relevant to education include Thissen
(1983) and Wang and Hanson (2005). Lee and Chen (2011) review this literature.

All of these models examined attempt to estimate an unknown person level latent
variable that can be interpreted as the person’s ability. Both TARRE and van der
Linden’s hierarchical models build directly upon the standard IRT models so are closely
related and are psychometric models not designed to represent the underlying cognitive
processes. The diffusion models have been developed and are often interpreted as models
of the cognitive processes. However, the studies usually used within the cognitive science
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studies involve items that are designed to require only a single cognitive process. The
typical item on a standardized test requires several cognitive processes. The focus here
is just to compare the predictive accuracy of the methods, rather than to assess if the
models are accurate descriptions of the underlying processes.

There are two methods that have been used within education to compare models that use
response times with ones that do not. The first is showing that the models yield similar
estimates with real data. For example, Wang and Hanson (2005) showed that their model
produced similar estimates to the 3PL with real test data (multiple-choice mathematics
questions from the ACT). The second method involves simulation. Wang and Hanson
(2005) simulated data and compared the θ̂ from the two models with the true θ used to
create the data. They found the θ̂ from the 3PL was correlated .884 with θ , but the θ̂

from their model was correlated .937. Similarly, van der Linden, Klein Entink and Fox
(2010) used simulation methods to show that the van der Linden model improved the
estimates of θ .

A difficulty with simulations is that the data need to be created in a way consistent with
how they arise in real testing situations. Widiatmo and Wright (2005) created data that
were either consistent with a diffusion model or with the van der Linden model. They
found that the estimates of ability were more accurate than a 2PL when the data were
consistent with the statistical model used to estimate θ , but were less accurate than
the 2PL when they were created in a manner inconsistent with the statistical model.
Therefore, it is important to examine the model fit with data consistent with real test
data. The problem is that with real data the true abilities are unknown.

Here the data reported in Wang and Hanson (2005) are analyzed in a manner that allows
the predictive accuracy of the models to be compared. It is important to observe how
well a model from training data can predict new data (Hastie, Tibshirani & Friedman,
2009). Leave-out-one cross-validation (CV) is a popular technique where the models
are fit for all but one of the n cases. The model is then used to predict the remaining
case.3 This is repeated for all cases and then an aggregate predictive value from all n
estimates is used as a measure of the predictive value of the approach. Here the models
are estimated for all but one of the items, the ability estimated for each test taker, and
then these ability estimates are used to predict responses on the remaining item using a
logistic regression.

McFadden’s pseudo-R2 is used to estimate the fit for all the items. Finding the mean
of R2 values is complicated by them being bounded by 0 and 1 (all the relationships
reported in this paper were positive). Here, their square-roots are taken, Fisher’s z

3Five-fold and ten-fold CV are also common and have some advantages over leave-out-one CV (Hastie et al.,
2009).
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transformation applied, the mean found, then the mean z value is back-transformed
into an R value, which is squared. This has the advantage that the final values are in a
well-known metric.

The main research question is how treating all rapid responses as errors (TARRE) and
then applying IRT affects the accuracy of ability estimates compared with IRT and with
two existing methods that incorporate response times. An auxiliary question is if there is
an improvement using one of the response time methods, is the improvement enough
to change scoring algorithms. Finally, leave-out-one-item cross-validation is used to
compare the accuracy of the different methods and it is argued this provides a useful way
to measure these differences.

Methods and results

The data used here are those used and discussed in Wang and Hanson (2005). They are
responses and response times from 20 ACT multiple-choice mathematics questions from
1161 test takers. The response times are all rounded to the nearest integer in seconds.
The code for all analyses is available from the author.

Comparing IRT models

The 1PL–4PL models are compared using leave-out-one item CV. In addition, a 3PL
fixing all of the guessing parameters at .25 is included. The package mirt (Chalmers,
2012) was used for all estimations. The defaults for the function mirt were used except
that the number of EM cycles was increased to 10,000 so that all solutions converged.
The fscores function by default uses the expected a posteriori method (Chalmers,
2012).

Table 1 shows the McFadden pseudo-R2s for each model. The bottom row shows the
means using Fisher’s transformation and then back-transformed into R2 scale. To three
digits the 2PL, the 3PL with the guessing value fixed at .25, and the unconstrained 3PL
provide the same level of accuracy. Table 2 shows that the only two models that fit
significantly poorer than others are the 1PL and 4PL (the 4PL over-fits the training data).
For simplicity, the 2PL is used in the next section for comparison.
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1PL 2PL 3.25PL 3PL 4PL
1 0.186 0.196 0.195 0.195 0.192
2 0.171 0.179 0.181 0.181 0.182
3 0.168 0.178 0.180 0.180 0.179
4 0.232 0.237 0.241 0.241 0.239
5 0.135 0.136 0.132 0.132 0.131
6 0.101 0.107 0.109 0.109 0.109
7 0.118 0.121 0.121 0.121 0.120
8 0.202 0.208 0.212 0.212 0.211
9 0.282 0.293 0.296 0.296 0.297

10 0.229 0.241 0.245 0.245 0.243
11 0.124 0.125 0.123 0.123 0.121
12 0.076 0.078 0.074 0.074 0.075
13 0.034 0.035 0.036 0.036 0.036
14 0.083 0.083 0.080 0.080 0.081
15 0.109 0.107 0.106 0.106 0.105
16 0.092 0.094 0.097 0.097 0.097
17 0.270 0.272 0.270 0.270 0.268
18 0.131 0.128 0.130 0.130 0.127
19 0.197 0.195 0.193 0.193 0.191
20 0.076 0.074 0.072 0.072 0.071

Column mean 0.146 0.149 0.149 0.149 0.148

Table 1: IRT models. McFadden’s pseudo-R2 for each method with 19 items predicting
the remaining item. The mean was calculating with Fisher’s transformation.

3.25PL is the 3PL model with the guessing parameter fixed at .25.

1PL 2PL 3.25PL 3PL 4PL
1PL 0.004 0.020 0.020 0.064
2PL 0.003 0.558 0.560 0.526

3.25PL 0.004 0.000 0.412 0.009
3PL 0.004 0.000 -0.000 0.009
4PL 0.003 -0.000 -0.001 -0.001

Table 2: The mean differences (lower triangle) and p values (upper triangle) comparing
each of the IRT models. Positive values in the lower triangle mean the row

method performed better than the column method. 3.25PL is the 3PL model
with the guessing parameter fixed at .25.
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Comparing 2PL to approaches that use response times

θ̂ from the 2PL is compared with θ̂ from the 2PL that treats all rapid responses (opera-
tionalized as less than 10 seconds) as errors (TARRE), the drift rate from the EZ diffusion
model, and θ̂ from van der Linden’s hierarchical model. van der Linden’s model is
estimated twice, once allowing each item to have its own response time discrimination
value (α j from Figure 1) and once having these equal for all items. In the Tables these
are referred to as vdl and vdltm1 respectively.

Table 3 shows that the model that treats all quick responses as errors has the highest
predictive value of all the models. The lowest predictive value is for the drift rate variable
of the EZ diffusion model. Table 4 shows the predictive value for the EZ model was
statistically significantly below all other models and the model treating all responses less
than 10 seconds as incorrect was statistically significantly above all other models.

The predictive accuracy of the ability estimates was improved with TARRE compared
with the 2PL procedure. However, the increase was small: McFadden’s pseudo-R2

increased by less than .001. In order to interpret a shift of this magnitude it is worth
examining what the shift is for including an extra item. The leave-out-one-item CV was
repeated for all sets of 19 items using both the 2PL and the TARRE procedures. The
mean R2 was 0.14719 for 2PL and 0.14796 for TARRE. The TARRE value is higher, but
is below the 2PL value for all 20 items, which was 0.14878. It is about halfway between
these values. Therefore, a larger increase in predictive accuracy could be accomplished
in many ways including adding an extra item.

Discussion

There are many issues to consider prior to recommending a fairly large change in scoring
algorithms. The main consideration is whether the improvement in accuracy outweighs
any potentially negative consequences of the change. In addition, it is necessary to
decide if there are other ways to improve the estimation of ability that are more cost
effective.

Although response time can be recorded during the computerized tests without affecting
the test taker, if response times are used to estimate ability for individuals on high-stakes
tests, this could affect test taking strategy. This could increase or decrease the predictive
accuracy of the scores and the fairness of the tests, and therefore this will need to
be investigated. If the change is to treat all rapid responses as erroneous, this would
have the benefit on timed tests that there would not be an advantage (nor would there
be a disadvantage, other than the time taken to guess on several items might allow a
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2PL TARRE EZdiff vdl vdltm1
1 0.1964 0.2007 0.1889 0.2022 0.1996
2 0.1786 0.1783 0.1674 0.1792 0.1790
3 0.1780 0.1777 0.1711 0.1780 0.1776
4 0.2368 0.2367 0.2189 0.2341 0.2351
5 0.1359 0.1338 0.1187 0.1350 0.1351
6 0.1074 0.1071 0.0853 0.1057 0.1062
7 0.1212 0.1225 0.1028 0.1197 0.1207
8 0.2076 0.2095 0.1944 0.2075 0.2069
9 0.2928 0.2927 0.2690 0.2919 0.2920

10 0.2407 0.2431 0.2175 0.2423 0.2412
11 0.1250 0.1259 0.1127 0.1245 0.1252
12 0.0782 0.0791 0.0704 0.0778 0.0777
13 0.0345 0.0340 0.0301 0.0332 0.0336
14 0.0829 0.0837 0.0742 0.0809 0.0816
15 0.1069 0.1078 0.1017 0.1060 0.1061
16 0.0938 0.0952 0.0927 0.0921 0.0926
17 0.2716 0.2737 0.2629 0.2701 0.2698
18 0.1277 0.1293 0.1301 0.1282 0.1278
19 0.1953 0.1953 0.1707 0.1920 0.1932
20 0.0737 0.0735 0.0763 0.0721 0.0728

Column mean 0.1488 0.1495 0.1373 0.1480 0.1481

Table 3: McFadden’s pseudo-R2 for each method with 19 items predicting the
remaining item. The means use Fisher’s transformation. The column heading
refer to: the two item parameter IRT model (2PL), treating all rapid responses

as errors and then applying the 2PL (TARRE), the EZ diffusion model
(EZdiff), van der Linden’s hierarchical model allowing response time
discrimination to vary among items (vdl), and his model with a single

discrimination value (vdltm1).
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2PL TARRE EZdiff vdl vdltm1
2PL 0.0274 0.0000 0.1589 0.0414

TARRE 0.0007 0.0000 0.0006 0.0001
EZdiff -0.0115 -0.0122 0.0000 0.0000

vdl -0.0006 -0.0014 0.0108 0.7133
vdltm1 -0.0006 -0.0013 0.0109 0.0001

Table 4: The mean differences (lower triangle) and p values (upper triangle) comparing
each of the models. Positive values in the lower triangle mean the row method
performed better than the column method. Columns are defined as in Table 3.

thoughtful response on one item) for test takers randomly and rapidly guessing if they
ran out of time at the end of a test. Based on the results presented in this paper, this
would be beneficial for scoring accuracy. However, it would be problematic if students
were worried about responding too quickly when they were able to answer a response
thoughtfully. This could increase test anxiety and be unfair to those who are not good at
assessing duration (which is not a construct that is supposed to be measured by the main
standardized tests). However, test scores are used for many purposes. TARRE, with its
better predictive accuracy, could be used in some circumstances without concern. For
example, these methods could be used with historical data for research purposes.

If the algorithm used by testing organizations was changed to reflect the general speed-
accuracy trade-off, as with the diffusion models (and others), then there would be
an advantage for responding quickly (if accuracy were maintained). This would be
contentious. In some cases the argument can be made that rapid responding shows better
grasp of the material. For example, if two students are presented with 5×4 = X and one
rapidly responds “20” and other counts fingers and toes before saying “20”, then it is
likely that the first student has mastered a skill that the other has not. However, with more
complex mathematical problems speed may be less informative, as the opening quotation
from Laurent Schwartz suggests. In addition, if this prompted test preparation companies
to encourage students to proceed too fast this could have negative consequences. Further,
many classmates take these tests together at the same test centers. This could result in
classmates racing each other. While students are required on timed tests to have some
competence in time management, the tests are not designed to measure this.

Another class of non-thoughtful (or not the right kind of thought) response that can be
rapid are when one test taker copies from another or in some other way has the answers
available without the need to read the question. While mixing the order of questions
and response alternatives on computer based tests means the test taker would still need
to skim the question and alternatives, it is likely that responses to these could also be
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quicker than 10 seconds. Of course if someone were trying to cheat and avoid being
caught, the person might also be aware about any timing rules and respond at a rate
appropriate for thoughtful responding.

Different models may preform better or worse with different kinds of tests. Mathemat-
ics tests are different from reading tests. It is important to continue testing different
response time models. As Widiatmo and Wright (2015) showed, how well a response
time/accuracy model fit depends on how closely the statistical model corresponds with
how the data were generated. It is important to understand the relation between the
cognitive processes used to answer a question and the response time. Further, there are
variations of both sequential sampling models (of which the EZ diffusion model is an
example) and hierarchical latent variable models (of which van der Linden’s model is an
example). The method used to compare the models, leave-out-one-item cross-validation,
can be used to compare the predictive value of these variations with a single sample.

The focus of this paper has been on using response time as collateral information to
improve the estimation of ability. There are other types of metadata that are increasingly
available because of computer administered tests. This includes tracking mouse/cursor
movements. It is also possible to measure different bio-markers (e.g., heart rate, gal-
vanized skin response) during tests. Future research is necessary to explore if these
measurements can be used to improve psychometric measurement.

Summary

The procedure that had the highest predictive value of those examined here was Treating
All Rapid Responses as Errors (TARRE). In addition to predictive value, other advantages
include that it is relatively simple to justify because the responses are too rapid to
demonstrate thoughtful responding, that the adjustment is simple to explain, and that
all the diagnostic output of IRT packages can be used. However, the consequences of
using this adjustment on test taker strategies, fairness, and anxiety need to be explored
before any changes are made. Shakespeare used the word tarre to mean invoke. The
TARRE procedure described here, or any procedure that uses response times, should
not be adopted without considering the consequences. Particularly with standardized
high-stakes tests, changing the scoring algorithm without considering the consequences
could, quoting the Bard of Avon, “tarre them to Controuersie”.

The Nation holds it no sinne, to tarre them to Controuersie.
(Shakespeare’s Hamlet, 1623, ii. ii. 354)
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