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Background of the Special Issues 

Computer-based assessment (CBA) has been dramatically boosted since the onset of 

the pandemic. The digital assessment environment enables the collection of non-tra-

ditional assessment data such as process data, textual data, image data, keystrokes, 

audio and video data from both traditional assessment platforms and innovative as-

sessment platforms incorporating augmented reality (AR) and virtual reality (VR) 

technology. Furthermore, process data in addition to item responses in CBA can be 

easily collected in the digital assessment process. Examples of process data in CBA 

include item response time, key-stroke, eye-tracking data, action sequence, and an-

swer change behaviors.  

Process data may bring new perspectives to better understand the assessment products 

or accuracy and the process how an item product was attained (Jiao, He, & Veldkamp, 

2021). The analyses of these non-conventional structured or unstructured process data 

call for new methodology other than latent trait modeling to extract more information 

that the traditional data and analysis methods could not provide. The emergence of 

big data from a variety of new sources brings ample opportunities and challenges to 

the traditional assessment framework, which arouses wide attention in interdiscipli-

nary research and real practice. 

von Davier, Mislevy and Hao (2021) recently proposed computational psychometrics 

for analyzing data in digital learning and assessment. They showcased a new method-

ological perspective using artificial intelligence (AI) methods including supervised 

and unsupervised machine learning algorithms (Hao & Ho, 2019), deep learning al-

gorithms including Deep Neural Network, Convolutional Neural Network, and Re-

current Neural Network in analyzing multimodal data, time series and stochastic pro-

cess methods in interactive learning and assessments, social networks analysis, and 

natural language processing (NLP) for text mining and automated scoring. Over the 

years, machine learning and deep learning algorithms have been successfully used in 

automated scoring (e.g., Cummins et al, 2016) and further explored in providing di-

agnostic feedback to test-takers in writing assessment (e.g., Foltz, 2004; Guo et al., 

2018). Recently machine learning algorithms have been explored for cheating detec-

tion (e.g., Kim et al., 2016; Liao et al., 2021; Man et al., 2019; Zhou & Jiao, 2022; 
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Zopluoglu, 2019) and cognitive diagnosis in assessment (e.g., Liu & Cheng, 2018; 

Jiao et al., 2021). However, the values added from other data sources using the new 

methodology deserve further extensive exploration. Our special issues hereby called 

for more applied empirical research and new methods from machine learning and deep 

learning in analyzing text, image, audio, and video multimodal assessment data. Be-

fore highlighting the needs of these special issues, we present a brief overview of 

machine learning, deep learning, and the use cases of these methodologies that have 

been demonstrated in previous studies..    

 

Overview of Machine Learning and Deep Learning 

Machine learning, as the name suggests, means that machine completes some tasks 

after learning like human beings. Machine learning is under the bigger umbrella of 

AI. According to Copeland (2016), deep learning is a subset of machine learning, 

which is a subset of AI. Since its early work in 1950s, AI developed slowly for over 

30 years. In 1980s, machine learning started to grow with the booming use of internet 

in daily life. Detection of spam emails is a good example of using machine learning 

algorithms. Starting in 2010s, deep learning made breakthrough in processing image 

data thanks to the affordable GPUs for speedy parallel processing in analyzing image 

data, text data, and big data in the digitalized world.  

Some well-known use cases emerged in fields like computer vision, speech recogni-

tion, text generation, search engine, intelligent assistants, autonomous systems, and 

robotics. All these advances brought about new impact on human daily life, the world, 

and re-genesis related to humanities, healthcare, education, and sustainability. Some 

high-impact success of AI applications includes Alpha Fold (DeepMind), Search and 

Recommendation Engines (Google), self-driving cars (Tesla) and ChatGPT (Open 

AI), the latest AI heat. 

When the buzz word, AI, is highly utilized in marketing or showcases the advance in 

the technology of using machine to replace human intelligence, the root of such ad-

vances is still machine learning. When the traditional data analysis methods are more 

related to statistical modeling of numerical structured data with strong assumptions, 

machine learning algorithms can tackle both structured and unstructured image and 

text data with pre-processing of image and text data into numerical values in a more 

naturalistic way. Thus, machine learning is also an interdisciplinary science integrat-

ing computer vision processing, computational linguistics, and statistics. On the other 

hand, deep learning mimics the neurons in the neural networks like human brain. At 

present, it is not clear how human brain process information within seconds using the 

neural networks in the brain, it is also hard to understand what is going on when deep 

learning algorithms process data. Interested readers can refer to different sources for 

details for the algorithms such as von Davier, Mislevy and Hao (2021) and Hao and 

Ho (2019). 
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Use Cases of Machine Learning and Deep Learning in Assessment 

One of the most successful applications of machine learning and deep learning in as-

sessment is automated scoring. After the development of the first automated essay 

scoring system by Page (1966), automated scoring becomes one of the hottest areas 

that attract researchers from different disciplines including assessment technology, 

psychometrics, computer science, statistics, computational linguistics, and data sci-

ence in general. Almost every testing company develops its own in-house proprietary 

automated scoring engine. These include the “e-rater” developed by Educational Test-

ing Service in 1998 (Attali & Burstein, 2006), the Intelligent Essay Assessor (IEA) 

developed by Pearson Knowledge and Technologies (Zupanc & Bosnic, 2015), Intel-

liMetric by Vintage Learning, Bookette by CTB, CRASE by Pacific Metrics, and Au-

toScore by the American Institute of Research. Over the last two decades, more prom-

inent automated scoring engines were developed including an essay scoring engine 

developed by Pacific Metrics in its participation in the competition funded by the 

Hewlett Foundation Automatic Student Assessment Prizes (ASAP). Built upon Page’s 

pioneering work, Measurement Inc. has been developing the PEG system and won the 

Grand Prizes in the recent Automated Scoring Challenge for the Nation’s Report Card 

(NCES, 2022) for automated scoring of short-answer reading items. More recently, 

Lottridge (2022) demonstrated the use of transformer neural networks for automated 

scoring.  

Recently, another hot line of research using machine learning and deep learning in 

assessment is cheating detection/abnormal responding behaviors/item pre-knowledge 

detection (e.g., Cavalcanti et al., 2012; Gorgun & Bulut, 2022; Hao & Li, 2022; Hao 

& Fauss, 2022; Kim et al. 2016; Liao et al, 2021; Man et al. 2019; Pan et al., 2022; 

Pan & Wollack, 2021, 2022; Ranger et al., 2022; Thomas, 2016; Tiong & Lee, 2021; 

Yan et al., 2022; Zhou & Jiao, 2022 a, b; Zopluoglu, 2019). When both product and 

process data are available in assessment, cheating or aberrant responding behavior 

detection which relies on multiple data sources impose challenges on the current psy-

chometric modeling and analysis approaches. Many researchers recently explored us-

ing supervised and unsupervised machine learning algorithms and deep learning al-

gorithms for such detection. Further, the recent release of generative AI app, 

ChatGPT, drew much attention to potential cheating using generative AI in assess-

ment (e.g., Yan et al., 2022).  

Further, other researchers studied problem-solving strategy in large-scale assessments 

by analyzing process data with machine learning or deep learning algorithms (e.g., He 

et al., 2019; 2021; Tang et al., 2020, 2021). These studies (e.g., Han et al., 2019; Hao 

et al., 2015; He & von Davier, 2015; 2016; Liao et al., 2019; Stadler et al., 2019) 

demonstrated the use of machine learning in feature extraction from high-dimensional 

complex process data. The others (e.g., He et al., 2021, 2022; Jiang et al., 2022; Ulitz-

sch et al., 2021; Ulitzsch et al., 2022a, 2022b) developed new dynamic sequence min-

ing methods to explore respondents’ testing behaviors in interactive tasks. 
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Some other use cases of machine learning and deep learning in assessment include 

automated item generation (e.g., Gierl et al., 2012; von Davier, A. et al., 2022; von 

Davier, M, 2019), estimating item parameters using BERT model or other text fea-

tures (e.g., Tan et al., 2023; Yancey et al., 2022), enemy item detection (e.g., Chiang 

& Peabody, 2023b; Fu & Han, 2023; Liu et al., 2023), equating (e.g., Jiang et al., 

2022), growth modeling (e.g., Tang & Li, 2022), cognitive diagnosis (e.g., Liu & 

Cheng, 2018; Jiao et al., 2021), adaptive testing (e.g., Bulut, 2022; Lan, 2022). Fur-

ther, researchers also explored using machine learning to assess next generation sci-

ence learning (Zhai, 2022). More recent advances include using deep learning or nat-

ural language processing to evaluate construct representation and dimensionality of 

item pools (e.g., Chiang & Peabody, 2023a), conducting differential item functioning 

(DIF) analysis (e.g., Mangino et al., 2023) and identifying the causes for DIF (Hoover 

et al., 2023), shortening an instrument for a targeted screening accuracy (Cheng, 

2023), evaluating or collecting validity evidence using NLP (Bulut et al., 2023) or 

topic modeling methods (Li, 2023), and field testing items using NLP with transform-

ers (Maeda, 2023). We strongly believe this list will keep growing, maybe exponen-

tially in the near future. 

 

What Special Issues 1 and 2 Covered 

We co-edited two special issues on machine learning and deep learning in assessment. 

Among the 11 published papers, two papers (Jung et al., 2022; Ormerod, 2022) stud-

ied automated scoring of both essays and short-answer questions. Jung et al (2022) 

focused on using artificial neural networks for automated scoring of constructed-re-

sponse items. Ormerod (2022) explored the feature-based interpretability in the de-

veloped automated essay scorer using the DeBERTa models. Five papers focused on 

cheating detection. Gorgun and Bulut (2022) utilized anomaly detection methods to 

identify aberrant item responses in intelligent tutoring systems. They explored six un-

supervised anomaly detection methods including Gaussian Mixture model, Bayesian 

Gaussian Mixture Model, Isolation Forest, Mahalanobis Distance, Local Outlier fac-

tor, and Elliptic Envelope. Pan et al. (2022) proposed a new approach to detect item 

compromise and preknowledge in computerized adaptive testing built upon the en-

semble learning idea. Support Vector Machine (SVM) and a self-training algorithm 

were used the base models. Using the autoencoder algorithm, a confidence score was 

adapted for CAT. Zhou and Jiao (2022) explored data augmentation using anomaly 

detection methods in cheating detection. Tang et al. (2023) explored the LSTM in 

detecting atypical test-taking behaviors. Yan et al. (2023) investigated detection of 

GPT-3 generative answers in large-scale high-stakes test. Tang and Li (2022) demon-

strated how to use XGBoost models with SHAP credit assignment to calculate student 

growth percentile, an index often used to track student growth in state accountability 

system. Zu et al. (2023) presented automated distractor generation for Fill-in-the-

Blank vocabulary items using generative AI. The study by He et al (2023) developed 

two machine learning models: random forest and SVM based multiclass hierarchical 

classification approaches to predicting problem-solving proficiency levels using 
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process data. Kara et al. (2022) explored prediction of oral reading fluency scores 

using between-word silence times using NLP and random forest algorithm. Further-

more, model selection for latent Dirichlet allocation in analyzing assessment data was 

investigated by Mardones-Segovia et al. (2023). 

These two special issues are in no means to exhaust the capacity of machine learning 

and deep learning in providing feasible solutions to issues and challenges in assess-

ment. However, the papers published in these two issues showcased the potentials and 

promises that machine learning and deep learning algorithms can bring about to im-

prove the current assessment theory and practices in different assessment settings: 

low-stakes and high-stakes.  

 

Further Exploration 

Due to the timeline and the space limits, some important issues related to the applica-

tions of machine learning and deep learning in assessment are not addressed, including 

the interpretability and validity of the results from machine learning and deep learn-

ing. In particular, when more advanced deep learning models are used, it would be-

come harder to clearly explain how the input data lead to the output results from the 

model. Though one paper in special issue 1 (Ormerod, 2022) addressed this issue by 

exploring mapping between the features and hidden states to facilitate the interpreta-

tion of the automated essay scores using the DeBERTa model, it is far beyond enough 

to inform assessment researchers and practitioners to fully understand the black box. 

Thus, the validity of using the methods still awaits further exploration.  

Further, another important issue in such applications is fairness. No paper in these two 

special issues addressed this topic. The editors believe that in real applications, model 

invariance can be checked to assure the fair treatment in developing a population 

model vs group-specific models. To address this issue, the editors hereby propose 

differential feature functioning to facilitate the fair interpretation of the results from 

machine learning or deep learning models, thus enhance the validity and fairness in 

using the results from machine learning or deep learning models in assessment.  
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