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Abstract 

A clickstream is a precise log of every user action taken in a software application. Clickstreams 

recorded during test taking experiences can be analyzed for behavior patterns. In this paper, we 

introduce a statistic, known as the Model Agreement Index (MAI), that quantifies how typical 

or atypical an examinee’s clickstream’s behaviors are relative to a sequence model of behavior; 

this model is trained to emulate student behaviors using a Long Short-Term Memory (LSTM) 

network. MAI is intended to be used as a simple statistic to detect instances of atypical user 

behaviors so that further analysis can be conducted to identify whether the atypical behaviors 

need to be mitigated in the future. One of the empirical results from this study is that certain 

examinees with low MAI scores were floundering on the opening and closing of certain tool 

widgets. This floundering caused wasted time for the examinee, and the discovery of this phe-

nomenon can enable an improvement in the test user interface, showing a good use for the 

proposed methodology. The study details the processes needed to train the LSTM along with a 

comparison between the LSTM and a “most common next action” baseline model. Addition-

ally, correlations of MAI with other indicators, such as answer changing, are explored. The use 

of MAI to identify test user interface issues is demonstrated. Real data from a statewide testing 

program is used in this study. 

Keywords: test security, atypical behavior detection, clickstream analysis, behavior modeling, 

scalable detection methods 
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Introduction 

In the context of K-12 large-scale standardized testing, test integrity involves multiple 

facets: ensuring that the environment is uniform across each testing location across 

the state, that students are taking the test with purpose and attention, and that cheating, 

in its many forms, does not occur. The pursuit of preventing or detecting cheating is 

an inherently challenging task, as those who do cheat attempt to avoid detection. 

Therefore, methods to detect cheating do not have the luxury of having a clear and 

obvious indicator of when cheating truly occurs. In the testing industry, many statis-

tical indicators and other proxies for cheating detection are used, and often a method 

can “flag” an individual for further investigation, relying on an arbitrator to make an 

ultimate judgment on the case. 

In this study, a sequence behavior model that leverages all tracked events in a click-

stream is proposed. The goal of this approach is to give a straightforward quantifica-

tion of how typical an examinee’s behaviors are within a testing context. The sequence 

behavior model is trained on data that includes all trackable actions in a computer-

based test environment, including navigations, multiple-choice response selections, 

tool usage like calculator or notepad, and accommodations such as screen contrast 

toggling. Note that the proposed model does not currently incorporate time into the 

model directly, but rather only focuses on the chronological ordering of behaviors 

represented through the clickstream. 

Such an approach differs from existing detection methods, which typically use one or 

two features of process data, like counting the number of wrong-to-right answer 

changes (Bishop & Egan, 2017) or modeling response times (van der Linden & Guo, 

2008; Wise & Kong, 2005) for aberrance detection. Using raw clickstream data, the 

proposed approach can idealistically model all possible typical behavior patterns, al-

lowing for the flagging of any behavior sequences that contain fewer typical behavior 

patterns. This can be a beneficial property for stakeholders interested in investigating 

any test-takers that are exhibiting atypical behaviors.  

 

Operational Definition of Atypical Behavior 

Suppose that a predictive model of student test-taking behaviors exists, with inputs 

being past clickstream actions and outputs being possible future actions. With this 

predictive model, one can define an “atypical clickstream” to be a clickstream that is 

not well predicted by the proposed model by comparing each observed action in the 

clickstream to the predicted probability of that observed action by the model’s output. 

Clickstreams that are better predicted by the model are supposedly more “typical” as 

they are more predictable. In this study, a predictive model of behaviors based on a 

Long Short-Term Memory (LSTM) architecture is proposed, described later in the 

Using LSTM for Behavior Modeling section. This predictive model is then used to 

compute a Model Agreement Index (MAI) value, which indicates the extent of 
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agreement between observed clickstream actions and model-predicted actions on a 

likelihood continuum ranging between 0 and 1. Clickstreams with relatively low MAI 

values are operationally considered more atypical than clickstreams with higher MAI 

values. 

An assumption inherent to this study is that such a predictive model can be generally 

useful to stakeholders interested in ensuring that typical test-taking operations are ob-

served, and that this model could serve as a system to monitor behavior patterns at 

scale, focusing on the entirety of a test rather than individual item responses. Moni-

toring algorithms are intended to flag noteworthy results to some degree of accuracy. 

For testing, noteworthy events could include “cheating behaviors” and “confusion.” 

It can be challenging to design these monitoring algorithms, as descriptions and sig-

nals of the cheating phenomenon and of student confusion are not precisely defined 

and may be extremely rare in practice. The operational definition of atypical in this 

paper serves as one lens in identifying “typical” and “atypical” behaviors, with the 

goal that flagging atypical behaviors using this definition will ultimately add value to 

stakeholders who want to ensure that typical test-taking processes are observed, and 

that atypical behaviors can be further analyzed to ensure nothing unwanted is occur-

ring. 

 

Related Work 

Test fraud, known to be harmful to test integrity and fairness, has been investigated 

for decades. Common test breach situations include obtaining advance copies of the 

test, sharing answers between examinees, and modifying incorrect responses. To mon-

itor test security, researchers have developed post-hoc statistical approaches 

(Asseburg & Frey, 2013; Reise & Due, 1991) to detect test-takers’ aberrant behaviors 

during testing, using item responses or other data collected during the testing process. 

Existing data forensics methods usually focus on one specific aspect at one time, e.g., 

examining if an item-response pattern is congruent with a specified measurement 

model (Drasgrow, Levine, & Williams, 1985), identifying extremely short or aberrant 

response times (Li, Wall, & Tang, 2018; van der Linden & Guo, 2008; Wise & 

DeMars, 2006), or detecting a large number of wrong-to-right answer changes at a 

group or individual level (Bishop & Egan, 2017).  

Motivational and emotional aspects of test-takers, such as test-taking efforts, are also 

found to be highly related to test performance (Asseburg & Frey, 2013). Their study 

shows that non-effortful behaviors are more likely to be identified with test-takers 

with lower ability, which in turn leads to a test performance that lies below the test-

takers’ maximum performance. Non-effortful test-takers are commonly identified by 

response-time patterns, with an underlying assumption that less motivated test-takers 

tend to speed in testing (Wise & Kong, 2005). A group of test-takers’ non-effortful 

behaviors might also exert an influence on the estimation accuracy of measurement 

models and test scores (Wise & DeMars, 2006). Therefore, understanding the test-
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takers’ behaviors is essential in enhancing the validity of educational and psycholog-

ical measurement.  

More recently, there has been greater emphasis on analyzing clickstream and process 

data for a variety of purposes. In (Jiao, He, & Veldkamp, 2021), a modern overview 

is presented, with 29 papers from 77 authors, of recent advances concerning the anal-

ysis of process data in educational and psychological measurement. Areas included in 

that collection of research articles include leveraging process data to explore test-tak-

ers’ behaviors and strategies, joint models for response accuracy and response times, 

and statistical models on response processes. Ulitzsch et al. (2021) jointly consider 

action sequences and timing to identify common response processes by employing 

cluster edge deletion for identifying well-separated groups of action patterns, where 

each pattern describes a common response process. In this related work, the proposed 

method focused on assessing response processes to a single item. Instead of focusing 

on processes for a single item, the method described in this paper utilizes behaviors 

from all items, including administrative behaviors such as navigating between items 

and using tools. 

Clickstream analysis has historically been used to determine and summarize user be-

haviors in web usage contexts (Banerjee & Ghosh, 2011; Heer & Chi, 2002). In these 

works, users’ navigation paths within a website were analyzed to obtain information 

about users’ preferences. Clustering techniques have been used to group together 

clickstreams with similar behavior usage patterns (Gunduz & Ozsu, 2003; Su & Chen, 

2015); these clusters were used to infer user interests and predict future user behav-

iors. In terms of aberrant and malicious user detection, clickstream analysis has been 

used to detect potential attackers who create fake identities in social media platforms 

(Wang, et al., 2017). In that work, sub-sequence counting with clustering is used to 

categorize clickstreams into different user archetypes, identifying clusters of click-

streams that could potentially be flagged for banning in their respective social media 

platforms.   

Predicting the next action given an existing sequence is common in the task of lan-

guage modeling, where the next word in a sequence is predicted based on prior infor-

mation from the sequence thus far. Existing research in the domain of language mod-

eling has found that sequence models based on Long Short-Term Memory networks 

have strong performance (Sundermeyer, Schlüter, & Ney, 2012), beating prior ap-

proaches based on n-grams or hand-crafted features. Utilizing LSTM networks has 

also been used to predict student behaviors in Massively Open Online Courses, to 

better understand usage patterns as well as to possibly identify useful resources based 

on the resources similar students have utilized in the past (Tang, Peterson, & Pardos, 

2017). Similarly, in the current work, the prediction model is used to predict which 

actions and behaviors are the most likely given a sequence of test-taking behaviors in 

a test environment. 
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Dataset 

The dataset for this study consists of clickstream data from a state-wide summative 

test administered to grade 8 students in 2021. Each row in the clickstream log contains 

key pieces of information: timestamp, click_action, item_id, user_id. The click_action 

is the actual click or action that was taken. The item_id is used to look up item-specific 

properties to append to the test state for modeling; for example, certain items might 

allow for calculator usage, so the item_id can be used to look-up whether calculator 

is allowed on this item. The user_id identifies which test-taker produced the click-

stream.  

Table 15 in the appendix shows the 151 possible actions from this clickstream dataset. 

The approach in the current study has a larger, more complex input space compared 

to other approaches. The key benefit of using this more complex input space is that 

every instance of clickstream behavior is modelled, allowing the LSTM model to po-

tentially learn many different patterns of test-taking behaviors. 

The input to the behavior model consists of the click_action as well as “test state”. 

Test state is a description of what is currently on the test and what options are available 

to the examinee. The possible test states for this study can be found in Table 14 in the 

appendix. Data pre-processing involves concatenating the ‘click_action’ with the ‘test 

state’ at each time step for each individual clickstream.  

 

 

Figure 1.  

Screenshot of Test Application 



Atypical Behavior Detection with LSTM 
81 

Figure 1 shows a screenshot of the testing application. To illustrate an example of a 

“test state”, the screenshot is marked with (A), (B), (C). Test state includes elements 

such as (A) MultipleChoiceItem, (B) a variety of tool options, such as Scientific Cal-

culator, and (C) navigational options, such as Next, Finish, and others.  The current 

test state is described in Table 1, where elements of the test are indicated as 0 or 1. A 

0 represents the element is not available in the current test state, and a 1 represents the 

element is available or on. The model can then leverage this information in making 

the correct prediction and in avoiding impossible predictions given the current test 

state. 

 

Table 1:  

Sample Test State from Screenshot 

Test State Element  

Basic Calculator 0 

Scientific Calculator 1 

Dictionary 0 

Protractor 0 

Guideline 1 

Sketch And Highlight 1 

MultipleChoiceItem 1 

OpenEndedItem 0 

… (Test state comprises 118 total elements; refer to 

Table 14 in appendix) 

 

 

Dataset Sample 

The dataset used in this study consists of 39,524 Grade 8 examinee records, with a 

total of 4.9 million clickstream rows, across 5 different test forms from the admin-

istration of a state-wide summative assessment in 2021. The 39,524 records represent 

every “valid” clickstream that was able to be processed.  

Table 2 shows the different n-counts across each test form, including the final 

valid/usable n-count. The first row in the table describes the entirety of the dataset, 

with all five forms combined, and then each subsequent row describes each individual 

form. Each form varies the order of questions asked, but all forms contain the same 

test items.  Any clickstream that was incomplete, interrupted, did not have a turn-in 

event, did not contain a valid login, or was generated by system processes were fil-

tered out. Clickstreams with fewer than 30 actions were additionally filtered out of 

the data. Most of these short clickstreams were generated by system-testing backend 
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processes and were not related to students taking tests; fewer than 1% of logged click-

streams had fewer than 30 actions. The last column in the table shows the average 

number of logged actions per clickstream for each valid clickstream. 

Clickstreams were truncated at 200 logged actions so that actions beyond the 200th 

action in a clickstream were not considered for modeling. Truncation can be a useful 

technique when trying to improve model training time for LSTM prediction models 

if it can be determined that the removal of data does not have a negative impact on the 

desired outcome effects from the prediction model. Truncation is typically employed 

when there are a few sequences with abnormally long lengths, as standard training 

procedures require that all input sequences be of the same standard length, so very 

long samples might be truncated to alleviate memory requirements and compute time 

instead of requiring all sequences to be “padded” with null data up to the abnormally 

long length of the outlier sequences. Only 202 out of the 4,900,088 actions were re-

moved in the truncation procedure for this study; these 202 actions came from 131 

unique clickstreams, so the amount truncated per unique clickstream is on the order 

of only a few actions. Since only a few actions were truncated, the impact of this 

truncation procedure is likely to be minimal to none. The original purpose of this trun-

cation procedure was to account for extremely long clickstreams; however, once the 

“valid criteria” was applied, nearly all clickstreams were at most 200 actions, with the 

longest clickstream coming in at 206 actions, just barely over the original truncation 

length limit.  

 

Table 2:  

Clickstream N Counts Across Different Forms in Test Data 

Test/form 
Total 

Unique IDs 

N Count: Valid clickstreams (Contains 

Login action, Turn-in Action, and at least 

30 actions) 

Average Number of Logged 

Actions in Valid Click-

streams 

All forms 92138 39524 122 

F.1 20295 8575 123 

F.2 20465 8779 123 

F.3 20352 8738 123 

F.4 20452 8735 123 

F.5 10573 4697 121 

 

A model is trained for each individual form, as the shuffling of item orders may impact 

behaviors. In Table 16 (located in the appendix), the counts for each possible click_ac-

tion are shown. Note that when interpreting Table 16, readers are only meant to gain 

a general understanding of the distribution of the observed clickstream actions as well 

as the distribution of the prediction model’s predictions. Notions of model accuracy 
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will be addressed in the model results section, specifically in Table 4 and in Table 5. 

The most common action taken was ITEM_MULTIPLE_CHOICE_ANSWER, which 

was taken 1,240,854 times, comprising 25.29% of the dataset. The next most common 

action was NAVIGATION_ITEM_NEXT, comprising 23.84% of the data. Therefore, 

49.13% of the logged clicks were either Multiple Choice Answer or Navigating to the 

next item. The remaining 50.87%, representing 2.5 million clicks, were distributed 

among the remaining 149 possible actions. The 3rd most common action was 

ITEM_DRAG_BOX_DRAG_END, comprising 4.91% of all clicks. Note the large 

disparity between 23.84% and 4.91%, showing that the top two actions were vastly 

more common relative to the rest of the possible click_actions. 

 

Using LSTM for Behavior Modeling 

The desired model for the task of predicting examinee behavior would 1) be capable 

of understanding the chronological flow of taking an exam, from starting the test, to 

answering all test items usually in chronological order, and then finally submitting the 

test for scoring, and 2) be capable of making a logical next-step behavior prediction 

based on observations from the past and based on the current test state. This sequential 

nature of predicting examinee behavior lends itself to the LSTM network architecture, 

which is especially well suited to generating predictions that are based on historical 

context. Consider that test-takers that have used a tool in an earlier part of the test may 

be more likely to use that tool again in a later part of the test, relative to those who did 

not use the tool earlier in the test. The LSTM architecture is capable of learning this 

kind of long-term relationship in sequences by leveraging its internal memory net-

work. For an illustrative perspective to understand the LSTM, interested readers are 

referred to (Olah, 2015), complete with step-by-step figures and illustrative examples. 

For a lengthier mathematical introduction to the LSTM and its training details, inter-

ested readers can see (Greff, Srivastava, Koutnik, Steunebrink, & Schmidhuber, 

2016). 

 

LSTM Implementation 

The model takes as input each examinee action represented by an index number. These 

indices correspond to the index in a 1-hot encoding of vectors; a 1-hot encoding is 

essentially a vector with all 0s except at the index location of interest, which is repre-

sented as a 1. Table 15 shows the mapping of indices to the corresponding clickstream 

action. Additionally, the model takes as input the current test state, represented by a 

vector of 0s and 1s, corresponding to indices found in Table 14. The concatenation of 

the one-hot vector and the test-state vector represents the input vector to the LSTM 

model. The sequence is consumed one element at a time. For example, if a clickstream 

has 45 actions taken, the LSTM model will consume each input vector (action + test 

state) one at a time, in sequential order, adding information to its internal 
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representation each time. This one-at-a-time consumption is often referred to as a 

timestep, where there is a “time” element to the model whereby events that have oc-

curred sequentially earlier in time can influence model predictions later in time, and 

that each sequential step through the process marks an explicit update to the model’s 

current state.  

The LSTM model was implemented in Keras (Chollet & Others, 2015), an open-

source software library that provides a Python interface for artificial neural networks 

with the machine learning library TensorFlow (Abadi, et al., 2015) serving as the back 

end. LSTM models have a variety of hyperparameters that can be tuned. In (Tang, 

Peterson, & Pardos, 2017), an LSTM model was used to predict clickstream actions 

in a web-based online classroom. In that work, a grid search over the number of hidden 

layers (1, 2, 3), the number of nodes per hidden layer (64, 128, 256), and learning rate 

(0.01, 0.001, 0.0001) was conducted. The results showed that the learning rates 0.01 

and 0.001 performed the best. Among the experimental models with those two learn-

ing rates, test-set accuracy varied by less than 0.01, showing that most configurations 

of hyperparameters performed equally well. For the current study, it is assumed that 

similar hyperparameter settings should also perform well, and that a grid search would 

similarly not achieve substantially different results. For the current study, the number 

of LSTM cells per hidden layer is set to 100, the number of hidden layers to 2, and 

the learning rate to 0.001. Increasing the number of hidden LSTM cells and the num-

ber of LSTM layers would effectively increase the learning capacity of the model, as 

each LSTM cell could potentially learn about a different aspect of the mapping be-

tween the input to the output. The learning rate parameter controls to what degree the 

model updates its internal representations and weights when model weights are up-

dated. For a thorough expository treatment of each hyperparameter that can be tuned 

in LSTMs, interested readers can see (Greff, Srivastava, Koutnik, Steunebrink, & 

Schmidhuber, 2016). 

Backpropagation is the training algorithm used to update the weights in neural net-

works in order to minimize the error between the expected output and the predicted 

output for a given input. For sequence prediction problems where there is an order 

dependence between observations, recurrent neural networks, which include LSTMs, 

are trained using a variation of the Backpropagation algorithm called Backpropaga-

tion Through Time, or BPTT for short. In effect, BPTT unrolls the recurrent neural 

network and propagates the error backward over the entire input sequence, one 

timestep at a time. The weights are then updated with the accumulated gradients. For 

a more in depth explanation of the BPTT training technique, interested readers may 

view (Brownlee, 2017).  

The proposed prediction model outputs 151 values, each value representing one of the 

possible clickstream actions. These values are converted to probabilities using the 

softmax function, which normalizes the output values to sum to 1. Each value in the 

output of the softmax function is interpreted as the probability of membership for each 

class (Brownlee, 2020). The ground truth for each prediction is the index of the next 

action; thus, the model attempts to predict the next action given a history of past 



Atypical Behavior Detection with LSTM 
85 

actions. Categorical cross entropy is used as the loss function; categorical cross en-

tropy is used when true labels are one-hot encoded, meaning that there is only one 

possible label for each prediction. Categorical cross entropy can also be called “loga-

rithmic loss,” whereby output probabilities that are far from the actual expected value 

are assigned a penalty that is logarithmic in nature. 

Categorical cross entropy loss is defined as:  

𝐿𝐶𝐸 =  − ∑ 𝑡𝑖 log(𝑝𝑖) ,

𝑛

𝑖=1

 for 𝑛 classes, 

𝑡𝑖 = {1 if the 𝑖𝑡ℎclass is true   

0 otherwise                      
 

(1) 

 

where ti is the truth label and pi is the softmax probability for the 𝑖𝑡ℎ class.  

Classical stochastic gradient descent maintains a single learning rate for all weight 

updates, and the learning rate does not change during training. A potentially more 

efficient alternative to classical stochastic gradient descent is the Adam (Kingma & 

Ba, 2015) optimizer. Adam is chosen as the optimizer for this study as it has been 

shown to work well in practice for a variety of neural network optimization tasks. 

Interested readers are directed to (Brownlee, 2021) that provides a comparative anal-

ysis of different methods for optimizing neural network model training. Dropout lay-

ers were added between LSTM layers as a method to curb overfitting. Dropout ran-

domly zeros out a set percentage of network edge weights for each batch of training 

data (Pham, Bluche, Kermorvant, & Louradour, 2014). The data was randomly split 

into a training set, comprising 70% of the data, and a validation set, comprising the 

remaining 30%.  Early stopping was used, so that the model was trained until 15 con-

secutive epochs did not result in improvement on the validation set. An epoch repre-

sents the process of passing through all training samples once during training; during 

this process, the model’s weights are updated towards improved prediction perfor-

mance, but the updates are down weighted by regularization techniques such as the 

model’s learning rate. The final LSTM model has a 269-dimensional input (action + 

test state) at each timestep and outputs a 151-dimensional output at each timestep. 

This implies that the model can differentiate 151 different actions in the output. The 

269-dimensional input consists of 151 dimensions for the click_action and then an 

additional 118 dimensions to describe the current test state.  

In this study, an nVidia RTX8000 GPU was used for model training and inference. 

Model training time information is provided so the reader can determine the practi-

cality of the methodology. Table 3 shows the time taken to train the LSTM model on 

each form, as well as the resulting best epoch based on the holdout validation set.  

Timing results could vary in the future by adjustments to training parameters such as 

batch sizes, differences in hardware, and differences in clickstream dataset size. In the 

current study, optimizing training time was not a primary objective.  
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Table 3:  

Training Epochs and Time by Form 

Form Best epoch Training Time (Total Hours) Training Time (Seconds Per Epoch) 

F.1 196 4.13 72 

F.2 204 4.48 79 

F.3 181 3.92 78 

F.4 183 3.97 78 

F.5 213 2.48 42 

  

Model Training Validation 

Figure 2 shows the training and validation loss for each epoch for test form F.1. Train-

ing and validation loss do not deviate strongly from each other, indicating that the 

chosen model is fitting well and generalizing to the validation set. One notable trend 

is that the validation loss appears to be lower than the training loss until roughly the 

125th epoch. This may seem unintuitive at first, as models typically perform better on 

training data and perform worse on unseen, validation data. This unintuitive phenom-

enon can occur for two reasons: 1) Training loss is incrementally computed after each 

mini-batch of training data is processed during an epoch. This means that loss calcu-

lations performed earlier in the epoch may have worse performance compared to cal-

culations performed later in the epoch when more weight updates have occurred. The 

model used during validation loss calculation does not suffer from this shifting per-

formance, as the model has already had all of its updates from the training pass com-

pleted, and all predictions on the validation set utilize the fully trained model follow-

ing the training epoch. 2) Dropout regularization is only applied during training but 

not during validation. Dropout reduces the input signal during training by randomly 

masking or removing input elements, forcing the model to make predictions using less 

data, whereas the model used during validation makes predictions based on full input 

data, thereby potentially increasing prediction accuracy. As training continues, the 

training loss curve eventually crosses lower than the validation loss curve after 

roughly the 125th epoch, which indicates that the model is improving its predictions 

on the training set at a slightly faster rate than its improvements on the validation set. 
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Figure 2.  

Training (Blue) and Validation (Orange) Loss during Fine-tuning for Form F.1 

 

Model Agreement Index  

The Model Agreement Index (MAI) is a straightforward index of how well an exam-

inee’s behaviors align with the trained clickstream behavior model. The index is 

simply the average probability score of an examinee’s observed actions according to 

the model’s predictions of their actions.  Therefore, MAI is effectively a summarized 

weighted probability over all actions taken within an individual clickstream. 

A clickstream c can be defined as a list of vectors. Each vector is a representation of 

a single click taken by an examinee combined with some state information that de-

scribes elements of the test that are present to the examinee at that timestep. The di-

mensionality of each vector is equal to the number of dimensions needed to create a 

one-hot encoding representation of the click-action space combined with the number 

of dimensions in the desired test state description. For the specific number of dimen-

sions unique to the data in this study, see the LSTM Implementation section presented 

earlier in this study.  

To calculate MAI for a clickstream c, the corresponding probability from the model 

output probability distribution for the actual action taken at each timestep is iteratively 

obtained, summed up, and divided by the length of c.  
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The MAI formula for a clickstream c can be described as: 

𝑀𝐴𝐼𝑐 =  
∑ ∑ 𝑡𝑠𝑖𝑝𝑠𝑖

𝑛
𝑖=1

𝑆
𝑠=1

𝑆
 , 

𝑡𝑠𝑖 =  {
1 if action 𝑖 is the action observed at timestep 𝑠
0 otherwise                                                                    

 

 

(2) 

 

where S is the length of the clickstream, s represents a single “step” or “timestep” and 

iterates from 1 through S, i is used to correspond to an index used to represent a par-

ticular action, n is the total number of possible actions and represents the highest pos-

sible value of i, tsi is a truth label at timestep s and for action i defined as described in 

formula (2), and psi is the softmax probability from the model for action i at timestep 

s. For the specific dataset used in this study, n takes a fixed value of 151, the mapping 

of each index i to a specific action is depicted in Table 15, S is on average 122 across 

all clickstreams but can vary, and there are a total of 39,524 valid clickstreams that 

are analyzed. 

MAI takes a score range from 0 to 1. Higher scores show stronger agreement between 

examinee observed behaviors and predicted model actions. Conversely, lower scores 

mean that the examinee has taken more atypical (and less likely) actions, according to 

the model’s predictions. In general, MAI can be used to identify individual examinee 

atypical behavior. MAI can also be aggregated for group-level analysis. 

 

Baseline Model – Most Common Next Action 

One of the simplest approaches towards a sequence prediction model involves as-

sessing how often an individual’s “next action” matches the “most common next ac-

tion” that the population would have taken given the immediately prior action. This 

model will be referred to as the Most Common Next Action (MCNA) model. The 

MCNA model can be further divided into two forms of tabulation: MCNA-Top1 and 

MCNA-D. MCNA-Top1 only considers the most common following action for a par-

ticular behavior and will therefore predict with 100% confidence that the next action 

will be this most common action. MCNA-D, where the D is short for “distribution”, 

weights each following prediction by its corresponding prevalence; this model can 

therefore provide a probability in its output prediction based on the proportion of times 

the “following” action followed the current action. 

The MCNA model is effectively a 2-gram, also known as a bigram (Collins, 1996), 

model. A 2-gram is a specific case of the “n-gram” model, whereby n specifies the 

length of sequence components to tabulate over when creating the prediction distribu-

tion. The two elements in these sequences are the current action and the action imme-

diately following that action. The number of elements to consider is generalized to 
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any n in the n-gram. The proposed LSTM approach could be somewhat thought of as 

an “infinite” length generalization of the n-gram approach that also leverages addi-

tional weighting mechanisms to model a sequence of elements; these weighting mech-

anisms can learn additional useful information about individual elements to enhance 

predictions. 

Tang et al. (2017) compared a similar LSTM behavior model systematically to a cor-

responding n-gram approach. The values of n for the n-grams studied in that paper 

ranged from 2 through 10. The result showed that the n-gram approach stopped im-

proving in accuracy at the 8-gram mark, indicating that 9- and 10-grams showed wors-

ening performance when generalizing from the training data to test data. The 2-gram 

(akin to the MCNA in this study) approach achieved top-1 accuracy of .630, the high-

est-performing 8-gram achieved .703, and the LSTM approach achieved .722. This 

prior work showed that while the n-gram plateaus in performance, the LSTM was 

capable of improving with stronger predictive power. For the current study, Table 17 

in the appendix shows the corresponding prediction for each possible behavior in the 

input space for the MCNA-Top1 model, tabulated from test form F.1. 

 

LSTM-MAI and MCNA-D Results 

Using the proposed LSTM model and the previously described MAI calculation 

method, Table 4 shows the MAI and the Top1 scores for both the LSTM and MCNA 

models across all 5 test forms. LSTM-MAI is used to denote the MAI results using 

the LSTM model. MCNA-D is parallel to the LSTM-MAI calculation, using the 

MCNA’s weighted prediction space as the output and generating an average accuracy 

based on these weighted predictions for each examinee clickstream. LSTM-Top1 an-

alyzes how often the top prediction from the LSTM model exactly matches the ob-

served action, without considering the weighted probability from the output distribu-

tion. MCNA-Top1 is parallel to LSTM-Top1 but uses the MCNA model instead. 

Standard deviations are included in parenthesis in each table cell. 
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Table 4:  

MAI And Top1 Performance for LSTM and MCNA 

Form Number LSTM-MAI Aver-

age Score (Std. 

Dev.) 

 MCNA-D  

Average Score 

(Std. Dev) 

LSTM-Top1 Aver-

age Score (Std. 

Dev.) 

MCNA-Top1 

Average Score (Std. 

Dev.) 

F.1 .668 (.08) .516 (.07) .774 (.08) .668 (.10) 

F.2 .661 (.08) .502 (.07) .766 (.08) .656 (.10) 

F.3 .658 (.08) .502 (.07) .765 (.08) .657 (.10) 

F.4 .662 (.08) .513 (.07) .770 (.08) .665 (.10) 

F.5 .675 (.09) .530 (.08) .778 (.09) .682 (.11) 

Overall Aver-

age 
.665 .513 .771 .666 

 

From Table 4, the LSTM-MAI outperformed MCNA-D by a wide margin, averaging 

.665 compared to .513 respectively across all 5 test forms, for an average absolute 

performance difference of .152. This large average difference shows that the incorpo-

ration of longer sequence histories, in addition to the LSTM’s internal memory and 

learning network, offers substantial improvement over just using the most common 

next action’s distribution. Top1 results are also included, whereby the LSTM-Top1 

results were also substantially higher than the MCNA-Top1 results, on average .771 

to .666, respectively. This indicates that the LSTM approach’s most likely prediction 

was accurate 77.1% of the time, while the MCNA’s most likely prediction was accu-

rate 66.9% of the time. Using the MAI metric is more informative compared to using 

the Top1 approach for model evaluation purposes, as the probabilistic weights from 

the MAI approach offer an interpretation of “likelihood” rather than assessing each 

action as simply “right” or “wrong”, or analogously “typical” versus “atypical”.  

Table 5 shows cross-tabulated results comparing LSTM-Top1 to MCNA-Top1 re-

sults. This tabulation shows how often the models agreed or disagreed on a correct or 

incorrect prediction, showing the exact numerical improvement that one model has 

over the other on the entire dataset.  

 

Table 5:  

Cross-Tabulated Prediction Results: LSTM-Top1 compared to MCNA-Top1 

 MCNA-Top1 Correct MCNA-Top1 Incorrect Totals 

LSTM-Top1 Correct 3,048,742 699,026 3,747,768 

LSTM-Top1 Incorrect 158,311 994,009 1,152,320 

Totals 3,207,053 1,693,035 4,900,088 
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From Table 5, it is possible to ascertain the positive predictive effect of using the 

LSTM model compared to the MCNA model. The top left cell shows how often both 

models correctly predicted an action, which occurred 3,048,742 times. Looking at the 

cell to the immediate right, there were 699,026 instances where the LSTM model 

made a correct prediction while the MCNA model made an incorrect prediction. Con-

versely, the MCNA model was correct 158,311 times where the LSTM model made 

an incorrect prediction. Taking the difference of these numbers, the LSTM model had 

a net positive effect of 540,715 predictions in this dataset. 

Figure 3 shows the distribution of LSTM-MAI scores in a histogram for Form F.1. 

The LSTM-MAI values are centered at 0.668 and follow a normal distribution. In 

practice, the MAI is considered a “relative” measure of normalness, where MAI ought 

to be discussed relative to other MAI values within the distribution. One possible ap-

plication of the relative MAI results would be to analyze the tails of the distribution 

to better understand what types of behaviors can be found at the low and high ends of 

the MAI spectrum and distribution.  

 

 

Figure 3.  

Histogram of MAI Scores for Form F.1 
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Analyzing which behavior patterns are prevalent at different MAI 

levels for this dataset 

The overarching framework to compute the proposed LSTM-MAI score is intended 

to be potentially applied to any computer-based test environment with clickstream 

logs. For each individual test administration, the nature of student behaviors may vary 

depending on test-specific and test-taker-population specific characteristics. That be-

ing said, it might be illustrative to analyze the kinds of behavior patterns that emerged 

in the test dataset used for this study, even though such patterns may not generalize to 

other datasets outside the scope of this paper. In this section, an analysis is conducted 

that illustrates what kinds of matching and mismatching patterns are observed at dif-

ferent ends of the MAI distribution.  

A mismatch occurs when the model’s prediction does not match the student’s ob-

served action at a timestep. Conversely, a match occurs when the model’s prediction 

does match the student’s observed action at a timestep. Table 6 shows the top 3 mis-

matching and matching predictions across the entire dataset. Each row in Table 6 con-

sists of the following elements in the first data column: “Highest Predicted,” “Ob-

served,” “Count,” “% of all,” “Average Probability Predicted,” and “Average Proba-

bility Observed.” Highest Predicted refers to the action name that was associated with 

the highest probability from the prediction model; this action corresponds to the high-

est predicted value from the model. Observed refers to the action name of the actual 

action taken at a timestep in the clickstream. When the Highest Predicted and Ob-

served values mismatch, then that means the most likely action predicted by the model 

did not match the observed action, resulting in a mismatching prediction. Count is the 

number of times the match or mismatch occurred across all possible prediction events, 

while % of all takes the Count and divides by the total number of clickstream events 

across the entire studied dataset. The Count and % of all metrics are intended to give 

the reader distributional information about when the prediction model makes match-

ing predictions and mismatching predictions. In the first column, Average Probability 

Predicted refers to the probability that was output by the prediction model for the 

Highest Predicted action. In the case of a mismatch, this is part of the error of that 

mismatching prediction, since the model’s prediction was ultimately not the observed 

action. The Average Probability Observed refers to the model’s prediction probability 

of the Observed action. Although the Observed action was not the highest probability, 

the prediction model still assigned some probability to this action (and all other pos-

sible actions), so that information is conveyed in this element. This information is 

intended to give distributional characteristics of the prediction model to better under-

stand how “confident” the model is when it makes predictions. In the final column of 

Table 6, information about the most common matching patterns is given. In this col-

umn, both the Highest Predicted action and the Observed action were the same, indi-

cating that the most likely prediction from the model matched the observed action in 

the clickstream. Count and % of all retain the same interpretation as from the previous 

column, while the Average Probability of Action is just one value because the Pre-

dicted action is the same as the Observed action, compared to the previous column 
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which broke this into two separate probabilities. The information from this table helps 

the reader obtain a better understanding of the kinds of scores that the prediction 

model outputs, and how much a matching or mismatching prediction might positively 

or negatively impact MAI scores. 

A match will naturally yield a higher MAI value, as the model’s most likely prediction 

agrees with the observed action. A mismatch will yield a lower MAI value. Since MAI 

is based on the probability of the action, the degree to which the MAI is affected will 

depend on how likely the match or mismatch is. Note that the “top 3 mismatches” will 

generally yield relatively high MAI results; the occurrence of a top 3 mismatch will 

not necessarily sway an MAI for a clickstream in the atypical direction very strongly. 

This is because the “top 3 most common mismatches” are relatively likely, even if 

they are not the most likely action according to the model. For reference, Table 6 also 

shows the average prediction probability for each match and mismatch; the average 

probability is used when calculating MAI for a particular clickstream.  

Looking at row 1, the most common mismatch occurred when the model predicted 

NAVIGATION_ITEM_NEXT, but the student was observed selecting a multiple-

choice answer. The average MAI value of this mismatch is .23, which will sway an 

MAI to be lower to a small extent, but not as much as a rarer mismatch would. Look-

ing at row 2, the next most common mismatch in this dataset happened when the stu-

dent “toggled calculator”, but the model predicted a multiple-choice answer. This mis-

match had an average MAI value of .19. The 3rd most common mismatch happened 

when the model predicted a multiple-choice answer event, but the student navigated 

to the next item, resulting in an average MAI value of .17. 

Looking to the last column in the table, the most common match involved correctly 

predicting NAVIGATION_ITEM_NEXT; 20.44% of all predictions were correctly 

identified as this navigation event, with an average MAI value of .77. The 2nd most 

common match was correctly predicting a multiple-choice answer, which comprised 

18.69% of all events with an average MAI value of .76.  Finally, the 3rd most common 

match involved finishing a “box drag”, which was part of a technology-enhanced-item 

event. Based on the overall MAI value of .99, this action appears to be a “forced” 

event within this clickstream, such that this clickstream event appears to always be 

logged given a particular prior event. Such artifacts can occasionally occur in click-

stream data depending on the design of how the clickstream logger records student 

data. 
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Table 6:  

Top 3 Mismatch and Matches 

Rank Most Common Mismatch Between Pre-

dicted and Observed 

Most Common Match Between Predicted and 

Observed 

1 Highest Predicted:  

NAVIGATION_ITEM_NEXT 

Predicted and Observed: NAVIGA-

TION_ITEM_NEXT 

Observed: ITEM_MULTI-

PLE_CHOICE_ANSWER 

 

Count: 229907 

% of all: 4.69 

Average Probability of Predicted: .71 

Average Probability of Observed: .23 

Count: 1001531 

% of all: 20.44 

Average Probability of Action: .77 

2 Highest Predicted: ITEM_MULTI-

PLE_CHOICE_ANSWER 

Predicted and Observed: ITEM_MULTI-

PLE_CHOICE_ANSWER 

Observed: TOOL_CALCULATOR_TOGGLE   

Count: 70381 

% of all: 1.44 

Average Probability of Predicted: .63 

Average Probability of Observed: .19 

Count: 915815 

% of all: 18.69 

Average Probability of Action: .76 

3 Highest Predicted: ITEM_MULTI-

PLE_CHOICE_ANSWER 

Predicted and Observed: 

ITEM_DRAG_BOX_DRAG_END 

Observed: NAVIGATION_ITEM_NEXT   

Count: 66877 

% of all: 1.36 

Average Probability of Predicted: .62 

Average Probability of Observed: .17 

Count: 229506 

% of all: 4.68 

Average Probability of Action: .99 
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Analyzing 15 individual clickstream results at different points in the 

MAI distribution 

Table 7 shows results from 15 individual test takers. The examinees are separated into 

three categories: Low, Mid, and High. Each of the three categories is comprised of 

five examinees, where one examinee is sampled from each of the 5 test forms. The 

low category is comprised of examinees approximately two standard deviations below 

the MAI mean, the mid category is comprised of examinees approximately at the MAI 

mean, and the high category is comprised of examinees approximately two standard 

deviations above the MAI mean. Examinees in the “low” category were around .49 

MAI; examinees in the mid” category were around .67 MAI; and examinees in the 

“high” category were around .83 MAI. 

The second column in Table 7 shows the most common mismatched prediction, while 

the third column in Table 7 shows the most common matching prediction. For exam-

ple, in the first row, the Examinee ID is Low.F.1. This indicates that this examinee 

was in the “low” category, approximately two standard deviations from the MAI 

mean, sampled from test form #F.1. Examinee Low.F.1 had a total clickstream length 

of 86. Of the total possible 86 predictions, the most common correct prediction oc-

curred 15 times, where the model correctly predicted a multiple-choice answer would 

occur. The most common incorrect prediction occurred when predicting a naviga-

tion_next, but instead the examinee submitted a multiple-choice answer selection. 

Looking across all 15 individual clickstreams, in 11 out of 15 of the cases, either 

NAVIGATION_ITEM_NEXT or ITEM_MULTIPLE_CHOICE was the most com-

mon mismatched prediction. The “observed” action from the mismatched prediction 

varied across 6 different observed actions. Among the high examinee clickstreams, 

the most common mismatches ranged from 1 to 4 in count, while the low examinee 

clickstreams ranged from 2 to 17 in count. Conversely, the most common matches 

ranged from 6 to 24 among the low examinees and ranged from 28 to 55 among the 

high examinees. Analyzing individual cases can allow for a better understanding of 

how a particular examinee tended to deviate from the model’s expected behavior. 

The resulting trends from Table 7 indicate that there are apparent differences in 

matches and mismatches across the different levels of “low,” “mid,” and “high” MAI. 

One notable trend is that the 5 high MAI clickstreams only maxed out at 4 occurrences 

of the most common mismatch. Conversely, for low and mid MAI clickstreams, low 

maxed out at 17 and mid maxed out at 13. This trend can be interpreted in that high 

MAI clickstreams do not exhibit any recurring “mismatch” themes, where the same 

mismatching action is taken by the student multiple times. Another interesting trend 

is that within the low MAI group, all 5 of the clickstreams had different most common 

mismatching patterns, meaning that the Predicted and the Observed actions within 

each of the most common mismatched patterns did not duplicate across the sample. 

This trend can indicate that low MAI clickstreams do not necessarily replicate the 

same mismatching behaviors all the time. In the mid MAI category, however, the trend 

is almost completely reversed. In four out of the five students in the mid MAI sample, 
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NAVIGATION_ITEM_NEXT is predicted and ITEM_MULTIPLE_CHOICE_AN-

SWER is observed as the most common mismatching pattern. This trend could indi-

cate that the “Mid MAI” clickstreams do share more uniformity relative to the low 

MAI clickstreams in mismatching predictions. Finally, in the sample of five high MAI 

clickstreams, the mismatch counts are all very low, indicating there are not many 

common patterns that are frequently mismatched for this sample. The results shown 

in this table and study may not necessarily generalize to other datasets; however, such 

an approach could be employed in analysis of future applications of the proposed 

methodology to uncover differences in matches and mismatches by MAI levels.  

 

Table 7:  

Mismatch and Match Pairs Across MAI Distribution 

Examinee 

ID   

Most Common Mismatching 

Prediction/Observed   

Most Common Matching Predic-

tion/Observed   

Clickstream 

Length   

Low.F.1  Predicted:  NAVIGA-

TION_ITEM_NEXT    

Predicted and Observed: 

ITEM_MULTIPLE_CHOICE_ANSWER  

86  

Observed: 

ITEM_MULTIPLE_CHOICE_AN-

SWER   

 

Count: 7 Count: 15 

Low.F.2  Predicted: 

ITEM_MULTIPLE_CHOICE_AN-

SWER  

Predicted and Observed: NAVIGA-

TION_ITEM_NEXT  

163  

Observed: TOOL_AN-

SWER_MASKING_TOGGLE  

 

Count: 17 Count: 24 

Low.F.3  Predicted: ITEM_MULTI-

PLE_CHOICE_ANSWER  

Predicted and Observed: NAVIGA-

TION_REVIEW_PANEL_CLOSE  

57  

Observed: NAVIGATION_RE-

VIEW_PANEL_OPEN   

 

Count: 4 Count: 6 

Low.F.4  Predicted:  NAVIGA-

TION_ITEM_NEXT 

Predicted and Observed: 

ITEM_MULTIPLE_CHOICE_ANSWER 

55  

Observed: ITEM_MULTI-

PLE_CHOICE_ANSWER 
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Count: 2 Count: 8 

Low.F.5  Predicted: ITEM_MULTI-

PLE_CHOICE_ANSWER 

Predicted and Observed: NAVIGA-

TION_ITEM_NEXT 

118  

Observed: TOOL_CALCULA-

TOR_TOGGLE 

 

Count: 8 Count: 12 

Mid.F.1  Predicted:  NAVIGA-

TION_ITEM_NEXT 

Predicted and Observed: 

ITEM_MULTIPLE_CHOICE_ANSWER 

173  

Observed: ITEM_MULTI-

PLE_CHOICE_ANSWER  

 

Count: 9 Count: 26 

Mid.F.2  Predicted: 

ITEM_DRAG_BOX_DRAG_STAR

T 

Predicted and Observed: NAVIGA-

TION_ITEM_NEXT 

166  

Observed: 

ITEM_DRAG_BOX_DRAG_END  

 

Count: 3 Count: 30 

Mid.F.3  Predicted:  NAVIGA-

TION_ITEM_NEXT 

Predicted and Observed: 

ITEM_MULTIPLE_CHOICE_ANSWER 

123  

Observed: ITEM_MULTI-

PLE_CHOICE_ANSWER  

 

Count: 8 Count: 27 

Mid.F.4  Predicted:  NAVIGA-

TION_ITEM_NEXT 

Predicted and Observed: 

ITEM_MULTIPLE_CHOICE_ANSWER 

153  

Observed: ITEM_MULTI-

PLE_CHOICE_ANSWER  

 

Count: 8 Count: 27 

Mid.F.5  Predicted:  NAVIGA-

TION_ITEM_NEXT 

Predicted and Observed: NAVIGA-

TION_ITEM_NEXT  

156  

Observed: ITEM_MULTI-

PLE_CHOICE_ANSWER  

 

Count: 13 Count: 54 

High.F.1  Predicted:  NAVIGA-

TION_ITEM_NEXT 

Predicted and Observed: NAVIGA-

TION_ITEM_NEXT 

91  
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Observed: ITEM_MULTI-

PLE_CHOICE_ANSWER  

 

Count: 2 Count: 28 

High.F.2  Predicted: NAVIGATION_DIREC-

TIONS_CONTINUE 

Predicted and Observed: 

ITEM_MULTIPLE_CHOICE_ANSWER 

95  

Observed: NAVIGATION_AC-

CESS_CODE_SUBMIT  

 

Count: 2 Count: 28 

High.F.3  Predicted:  NAVIGA-

TION_ITEM_NEXT 

Predicted and Observed: 

ITEM_MULTIPLE_CHOICE_ANSWER 

92  

Observed: ITEM_MULTI-

PLE_CHOICE_ANSWER  

  

 

Count: 4 Count: 28 

High.F.4  Predicted: 

ITEM_DRAG_BOX_DRAG_STAR

T 

Predicted and Observed: NAVIGA-

TION_ITEM_NEXT 

89  

Observed:  NAVIGA-

TION_ITEM_NEXT 

 

Count: 1 Count: 30 

High.F.5  Predicted: 

ITEM_DRAG_BOX_DRAG_STAR

T 

Predicted and Observed: NAVIGA-

TION_ITEM_NEXT 

154 

Observed:  NAVIGA-

TION_ITEM_NEXT  

 

Count: 1 Count: 55 

 

Analyzing the ends of the MAI distribution 

Table 8 shows the results for the individual clickstream that achieved the lowest MAI 

score in the dataset. With a total of 56 clicks, this clickstream received an MAI score 

of 0.35. Table 9 shows the results for the clickstream that had the highest MAI score. 

The highest MAI result had a total of 83 clicks, with an MAI score of 0.90. Looking 

at the percentages in both tables, it is evident that the highest MAI result had a larger 

proportion of observed actions using NAVIGATION_ITEM_NEXT (34.94 %), and 

ITEM_MULTIPLE_CHOICE_ANSWER (33.73%), compared to 17.86 % and 19.64 
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% in the lowest MAI result. The highest MAI result conformed to the most common 

behavior patterns exhibited among all test-takers, while the lowest MAI result often 

deviated from expected behaviors.  

 

Table 8:  

Top Predicted and Observed Actions for Lowest MAI Result 

Rank Observed Action N-count Percent Predicted Action 
N-

count 
Percent 

1  ITEM_MULTI-

PLE_CHOICE_AN-

SWER 

11 19.64 

ITEM_MULTI-

PLE_CHOICE_AN-

SWER 

17 30.36 

2 NAVIGA-

TION_ITEM_NEXT 
10 17.86 

NAVIGA-

TION_ITEM_NEXT 
9 16.07 

3  TOOL_CALCULA-

TOR_TOGGLE 
10 17.86 

TOOL_CALCULA-

TOR_OPEN 
9 16.07 

 

Table 9:  

Top Predicted and Observed Actions for Highest MAI Result 

Rank Observed Action 
N-

count 
Percent Predicted Action N-count Percent 

1  NAVIGA-

TION_ITEM_NEXT 
29 34.94 

NAVIGA-

TION_ITEM_NEXT 
27 32.53 

2  ITEM_MULTI-

PLE_CHOICE_AN-

SWER  

28 33.73 

ITEM_MULTI-

PLE_CHOICE_AN-

SWER  

27 32.53 

3  ITEM_DRAG_BOX_D

RAG_START  
6 7.23 

ITEM_DRAG_BOX

_DRAG_START 
7 8.43 

 

Table 10 further describes the nature of the mismatching predictions for the lowest 

MAI result. The top 3 most common mismatching predictions sum to a total of 11 

mismatches. Since the lowest MAI result had a total of 56 clicks, there is an 11/56 

error rate from the top 3 mismatches. The most common prediction error for this click-

stream occurred when predicting the student would OPEN the calculator, while the 

student instead TOGGLED the calculator tool. Opening a tool in this test application 

requires two steps. The first step would be to “click” on a calculator icon. After this 

click occurs, the calculator does not open yet. A separate menu pops up, allowing the 

student to select the calculator type; in this test, the only option available was labeled 
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“Scientific”. Therefore, clicking on the calculator icon was a TOGGLE, and then 

clicking “Scientific” from the options was to OPEN the calculator. The vast majority 

of use cases “toggles” the calculator, and students then immediately “open” the cal-

culator. However, this low MAI result had repeated toggles one after the other, mean-

ing the student was perhaps confused about how to open the calculator, potentially not 

realizing that a second selection was needed to open the calculator. This could mean 

that the test application user experience could potentially be improved to remove this 

kind of confusion. From a practical standpoint, the “atypical” MAI score here was 

clearly indicative of something abnormal happening, perhaps indicating confusion by 

the student. This analysis could potentially be used to inform a possible modification 

to the testing environment to streamline access to the calculator, which could poten-

tially provide a better test experience to confused students during a high-stakes test. 

 

Table 10:  

Top Mismatch and Matching Patterns of Lowest MAI Result 

Rank  Most Common Mismatch Pattern  Most Common Match Pattern  

1  Predicted: TOOL_CALCULATOR_OPEN Predicted and Observed: ITEM_MULTI-

PLE_CHOICE_ANSWER 

Observed: TOOL_CALCULATOR_TOGGLE  

Count: 5 Count: 8 

2  Predicted: ITEM_MULTIPLE_CHOICE_AN-

SWER 

Predicted and Observed:  

NAVIGATION_ITEM_NEXT  

Observed:           

NAVIGATION_ITEM_NEXT 

 

Count: 3 Count: 5 

3  Predicted: 

NAVIGATION_ITEM_NEXT 

Predicted and Observed: 

TOOL_CALCULATOR_OPEN 

 

Observed:     

ITEM_MULTIPLE_CHOICE_ANSWER   

 

Count: 3 Count: 4 

 

Table 11 shows the most common mismatches and matches for the highest MAI re-

sult. The top 3 mismatches only occurred once each, thus comprising an error rate of 

just 3/86 from the top 3 mismatches, much lower than the result from the lowest MAI 

result. The majority of clicks (54/86) comprised NAVIGATION_ITEM_NEXT and 
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ITEM_MULTIPLE_CHOICE_ANSWER. Given that this clickstream had the highest 

MAI result in the data, this examinee matched the model’s expected behavior the most 

and rarely deviated from common actions.  

 

Table 11:  

Top Mismatch and Matching Patterns of Highest MAI Result 

Rank  Most Common Mismatch Pattern  Most Common Match Pattern  

1  Predicted: NAVIGATION_RE-

VIEW_PANEL_OPEN 

Predicted and Observed: NAVIGA-

TION_ITEM_NEXT 

Observed: ITEM_MULTIPLE_CHOICE_AN-

SWER  

 

Count: 1 Count: 27 

2  Predicted: ITEM_DRAG_BOX_DRAG_START  Predicted and Observed:  

ITEM_MULTIPLE_CHOICE_ANSWER  

Observed: NAVIGATION_ITEM_NEXT    

Count: 1 Count: 27 

3  Predicted: 

ITEM_TILE_BOX_DRAG_START  

Predicted and Observed: 

ITEM_DRAG_BOX_DRAG_START  

 

Observed:     

NAVIGATION_ITEM_NEXT   

 

Count: 1 Count: 6 

   

 

MAI Comparisons 

On its own, MAI summarizes to what extent a test-taker performs a predictable action 

or pattern of actions, weighted probabilistically. MAI is primarily best interpreted as 

a relative measure of typicalness compared to the population, rather than an absolute 

measure of something concrete. This property would ideally be utilized as part of a 

multiple-methods approach towards monitoring test irregularities, as MAI could be 

considered one more index to rely on in monitoring testing administrations at large. 

Drawing comparisons from MAI to other indicators would be a primary method to 

interpret such relative results. 
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Comparisons to Scale Sores  

Each test-taker was assigned to take one of the five online test forms, denoted as F.1 

through F.5. A single form is comprised of two testing sessions, denoted as Session 1 

and Session 2. Based on response patterns from both Session 1 and Session 2 com-

bined, each test-taker was assigned a scale score that ranges between 200 to 400.  

 

Table 12:  

Descriptive statistics of scale scores and MAI on sessions 

 
 Scale Score MAI Score 

 
Both Sessions Session 1 Session 2 

F.1 Mean 265.52 0.64 0.69 

 S. D. 33.07 0.08 0.08 

F.2 Mean 267.02 0.62 0.69 

 S. D. 34.08 0.08 0.08 

F.3 Mean 266.63 0.63 0.69 

 S. D. 33.05 0.08 0.08 

F.4 Mean 265.26 0.64 0.68 

 S. D. 33.39 0.08 0.08 

F.5 Mean 234.49 0.65 0.70 

 S. D. 27.70 0.09 0.09 

 

Table 12 shows the descriptive statistics for scale scores and MAI scores by form and 

session. Forms F.1 to F.4 have similar means and standard deviations. Form F.5 is a 

read aloud form, and scale scores were slightly lower relative to the scores from the 

other four forms. Read aloud is a non-standard accommodation applied only to stu-

dents with special needs. Form F.5 is included in the current study for a general anal-

ysis, but the difference between form F.5 and other forms is not thoroughly investi-

gated in the current study. In the following analysis, Form F.1 will be mainly used as 

an example to show the relationship between MAI scores and other variables. For 

Form F.1, the scale scores have a mean of 265.52 and a standard deviation of 33.07. 

The average MAI score is slightly lower in test session 1 (0.64) than in test session 2 

(0.69). Due to the distributional difference between test session 1 and session 2, the 

relationship between MAI scores and scale scores will be analyzed by test sessions 

separately.  

Figure 4 plots MAI across the deciles of the scale score distribution for Form F.1. A 

decile splits the distribution of scale scores into 10 ordered groups, with each decile 

comprising 10% of the total count of test-takers. The first decile is comprised of the 

lowest scoring 10% of test-takers, while the last and tenth decile considers the highest 

scoring 10% of test-takers.  The x-axis of the figure shows the range of scores that are 
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included in each decile group. Session 1 and Session 2 are plotted separately. For 

Session 1 results, there appears to be a slightly decreasing trend in median MAI scores 

up until about the 6th decile group. From the 7th through 10th decile, there is a slightly 

increasing trend. For Session 2 results, the slightly decreasing trend goes from the 1st 

through the 8th decile, and then there appears to be a slight increase in MAI scores in 

the 9th and 10th decile. These results indicate that the relationship between MAI and 

performance does not appear to be linear. It is also of note that the inter-quartile ranges 

of each box plot span a relatively wide range, indicating that there is not necessarily 

a strong or obvious relationship between MAI and scale score, other than the slight 

dip observed in the distributions from both test sessions. 

 

 

Figure 4.  

MAI scores against scale score decile groups for form F.1 
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Comparing MAI Score to Aberrance Detection Indices 

N2 and NC2 (Bishop & Egan, 2017) are two common aberrance indices (Ranger, 

Schmidt, & Wolgast, 2020) that are relatively straightforward to compute. N2 indi-

cates the number of items on which an examinee changes his/her response at least 

once. NC2 indicates the number of items on which a test-taker changes his/her re-

sponse from wrong to right at the last attempt. Other aberrance indices focus on re-

sponse-time analysis.  Based on the lognormal model for response times (van der 

Linden & Guo, 2008), Li et al. (2018) introduced the statistical indices 𝑍𝑙 and 𝑍𝑠 . 𝑍𝑙 

detects whether an examinee has too short or too long response times on each item 

during the test. 𝑍𝑠, similar to 𝑍𝑙, identifies extreme response times, taking person 

speed into consideration in addition to the distribution of response times on each item. 

High values of both 𝑍𝑙 and 𝑍𝑠 indicates aberrant response time on an item. The extent 

of aberrance of an examinee’s response time pattern is represented by the mean of 𝑍𝑙 

and 𝑍𝑠 across all items. Furthermore, 𝑍𝑙 and 𝑍𝑠 could be calculated based on the re-

sponse time of examinee’s last attempt or the total response time on each item. There-

fore, four sets of aberrant RT indices were calculated: 𝑍𝑙_𝑙𝑎𝑠𝑡𝑅𝑇, 𝑍𝑠_𝑙𝑎𝑠𝑡𝑅𝑇, 

𝑍𝑙_𝑡𝑜𝑡𝑎𝑙𝑅𝑇 and 𝑍𝑠_𝑡𝑜𝑡𝑎𝑙𝑅𝑇. 

 

Table 13: 

Correlation Coefficients Between MAI scores and Traditional Aberrance Detection Indices 

 Form F.1, Session One Form F.1, Session Two 

 MAI_Score 
Top1_ 

Accuracy 
Top3_ 

Accuracy 
MAI_Score 

Top1_ 
Accuracy 

Top3_ 
Accuracy 

N2 -.35 -.38 -.14 -.39 -.44 -.08 

NC2 -.25 -.27 -.13 -.31 -.33 -.10 

𝑍𝑠_𝑙𝑎𝑠𝑡𝑅𝑇 -.29 -.31 -.18 -.22 -.25 -.08 

𝑍𝑙_𝑙𝑎𝑠𝑡𝑅𝑇 -.20 -.21 -.14 -.10 -.14 -.03 

𝑍𝑠_𝑡𝑜𝑡𝑎𝑙𝑅𝑇 .02 .00 -.02 .05 .05 -.03 

𝑍𝑙_𝑡𝑜𝑡𝑎𝑙𝑅𝑇 .12 .10 .04 .16 .15 .04 

 

From Table 13, among the traditional aberrance detection indices, both N2 and NC2 

have a weak negative correlation with MAI for both sessions of Form F.1. The corre-

lation between N2 and MAI scores is the highest among the tested statistics; this could 

be somewhat expected given that both N2 and the current MAI approach do not con-

sider response correctness or response times, while the other models do. The negative 

correlation shows that, on average, examinees who change answers more frequently 

have lower MAI scores. The correlation coefficients between MAI scores and re-

sponse time indices are relatively small. The correlation with 𝑍𝑠_𝑙𝑎𝑠𝑡𝑅𝑇 and 

𝑍𝑠_𝑙𝑎𝑠𝑡𝑅𝑇 are negative, while the correlation with 𝑍𝑙_𝑡𝑜𝑡𝑎𝑙𝑅𝑇 and 𝑍𝑠_𝑡𝑜𝑡𝑎𝑙𝑅𝑇 are 

very slightly positive. The highest correlation coefficient belongs to 𝑍𝑠_𝑙𝑎𝑠𝑡𝑅𝑇, 
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indicating that examinees who have higher response time aberrance on their last at-

tempt on an item tended to have slightly lower MAI values. The current calculation 

of MAI does not incorporate response time or timing between actions. In future work, 

if timings were to be included as part of the MAI computation, correlations with ab-

errance indices that are related to response times could increase.  

 

 

Figure 5.  

NC2 Index Across MAI Deciles for Form F.1  

 

Figure 5 plots the average NC2 value across the 10 deciles of MAI scores for Form 

F.1. Note the downward trend, where the average NC2 value starts at 2.1 in decile 1 

and decreases to 0.8 in decile 10 for Session One. The average NC2 value decreases 

from 2.4 to 0.7 for Session Two. This trend shows that lower MAI scores tended to 

have higher NC2 values across the entire distribution of MAI scores. In interpretive 
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terms, this means that clickstreams that were identified as relatively more atypical by 

their MAI values tended to also be relatively more aberrant according to their NC2 

values. 

The comparisons discussed in this section are a small subset of all possible compari-

sons to aberrance indices, intended to illustrate the type of analysis that could be done 

when using an index like MAI in practice. Since each test administration is unique, 

establishing relationships between indices should be evaluated on a dataset-by-dataset 

basis, as relationships found in one dataset may not generalize when evaluating other 

datasets.  

 

Discussion 

In this study, a behavior prediction model that predicts test-taking behaviors based on 

clickstream data was illustrated. The proposed LSTM approach demonstrated sub-

stantial accuracy improvements over the baseline MCNA model in terms of predicting 

the next action given prior actions. The model utilizes past clickstream behaviors as 

well as a snapshot of the current test state environment. An operational definition of 

normality and atypical behaviors was established based on the predictions of the 

model, whereby clickstreams that demonstrate low MAI could be considered atypical 

since the actions in those clickstreams are predicted to be less likely to happen during 

testing. When analyzing the behavior patterns of low MAI students, it was found in 

this study that opening the calculator was a common source of “wasted clicks” for 

many clickstreams with low MAI. This finding is a practical result which can inform 

test designers that there may be opportunities to optimize and improve the calculator 

use workflow for the test application that generated the student clickstreams, as some 

students may be wasting time or getting stuck on a task that should be unrelated to the 

test-taking experience. In future studies, analyzing different levels of MAI can help 

identify common wanted and unwanted behavior patterns for different types of test-

takers stratified by different levels of MAI scores. The proposed method is one general 

approach towards utilizing process data to analyze normal and atypical behaviors 

unique to a particular test administration.  

 Identifying testing irregularities in large-scale testing environments is typi-

cally approached by using multiple methods, starting from ensuring item bank integ-

rity to ensuring physical test-location uniformity as well as analyzing test-taker pro-

cess data, such as their response choices, timing, performance irregularities, and be-

havioral clickstream data. In practice, identifying cheating behaviors is incredibly dif-

ficult. In many test administrations, there may actually be zero substantiated occur-

rences of cheating, making this a sparse phenomenon that is not easily modelled. De-

spite how rare the objective is, test administrators still want to invest in multiple mon-

itoring techniques to feel confident that testing irregularities are identified and under-

stood. It is within this scope and need that the proposed behavior modeling and cor-

responding MAI calculation are situated, allowing for a simple statistical index that 
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quantifies the normalness of each examinee’s actions. This simple statistical frame-

work allows for outlier values to be further scrutinized. In this post-hoc analysis, in-

vestigators can better understand the typical and atypical behavior patterns that arise 

during testing. In conjunction with other methods that are typically used, such as the 

well-known person fit indexes (Reise & Due, 1991) and “rapid guessing” indicators 

(Wise & Kong, 2005), the MAI score can provide a further vector of monitoring in-

formation to create a case that test results are typical.  

 

Limitations and Future Directions 

The approach of training directly on granular clickstream data has the benefit of in-

corporating all behavior patterns and allows the model to freely learn about normal 

behavior patterns across many different test-taker archetypes and styles. However, 

this freedom has the drawback that interpreting model results are less straightforward 

compared to models where input features are more strictly defined. The LSTM model 

does not explain why one individual’s clickstream achieves a high MAI and a different 

one achieves a low MAI. Since the model depends entirely on the training data and 

the distribution of behaviors in the training data, interpretations about what “low” or 

“high” MAI means in terms of actual behaviors will always depend on post-hoc anal-

ysis of examinee behavior clickstreams at varying levels of MAI. In all circumstances, 

a low MAI indicates that the behaviors of an individual were less expected relative to 

the population of other test-takers.  

Future studies could be conducted to investigate and improve MAI in several direc-

tions. First, the effectiveness of MAI in detecting potential cheating behaviors could 

be further evaluated with simulated data or labeled contaminated data in future stud-

ies. Secondly, the general approach towards modeling behaviors can be extended with 

additional data when available. The use of timing and timestamps, for example, was 

not analyzed in the current study, but could have a meaningful impact on identifying 

noteworthy behavior patterns and related analyses in future work. Finally, the poten-

tial connections between MAI and other indicators, including performance and aber-

rance indices, could also be further analyzed, focusing on the specific monitoring 

needs of the interested party.  
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Appendix 

Table 14:  

Test State (Concatenation of Tools, Widgets, and Accommodations) 

Standard Tools  

1 Basic Calculator  

2 Custom Masking  

3 Dictionary  

4 Graphing Calculator  

5 Protractor  

6 Ruler  

7 Scientific Calculator  

8 Standard Calculator  

Standard Universal Tools  

9 Eliminator  

10 Guideline  

11 Screen Zoom  

12 Sketch And Highlight  

13 Answer Masking  

Standard Widgets  

14 Association  

15 Bar chart  

16 Browser  

17 CodeInput  

18 Connections  

19 Data Table  

20 Draggable  

21 Electronic Circuit  

22 Fill in the blank  

23 GoalBox  

24 Grapher  

25 GridWidget  
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26 HotSpot  

27 LineChart  

28 MathInput  

29 MathResponse  

30 MediaBox  

31 Multiple Choice  

32 MultipleChoiceItem  

33 OpenEndedItem  

34 Partition Number Line  

35 Pie Chart  

36 Rearrange  

37 Rich text response  

38 Select and Change  

39 Select from drop down  

40 SelectPoint  

41 Selectable Text  

42 Selection Number Line  

43 SketchPad  

44 Slider  

45 SpeechRecorder  

46 Stimulus  

47 TabbedBox  

48 Text response  

49 TextBox  

50 TileBox  

Standard Accommodation  

51 allowaccessibilitymodetesting  

52 answermasking  

53 aslvideoela  

54 aslvideomath  

55 assistivetechnologydevicepresentation  

56 assistivetechnologydevicesresponse  
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57 basiccalculator  

58 braillenotetaker  

59 braillewriter  

60 colorcontrast  

61 commercialwordtoworddictionary  

62 customizedduallanguagedictionary  

63 custommasking  

64 elattsspanish  

65 foregroundcolour  

66 headphonesnoisebuffer  

67 humanreadereng  

68 humanreadersp  

69 humansigner  

70 humansignertestdirections  

71 invertcolourchoice  

72 magnification  

73 mathtools  

74 mathttsenglish  

75 mathttsspanish  

76 nativelanguageaccommodations  

77 picturedictionary  

78 pocketwordtowordtranslator  

79 readaloudtoself  

80 refreshablebraille  

81 scientificcalculator  

82 screenreader  

83 scribeconstructedresponse  

84 scribeselectedresponse  

85 spanishlanguageversion  

86 speechtotext  

87 spokenell  

88 spokens504  
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89 spokenspanish  

90 wordprediction  

91 wordpredictionemb  

92 Read Aloud US History  

93 answer masking  

94 color contrast  

95 ellaccommela  

96 ellaccommmath  

97 ellaccommscience  

98 ellaccommushistory  

99 general masking  

100 iepaccommela  

101 iepaccommmath  

102 iepaccommscience  

103 iepaccommushistory  

104 line reader  

105 read aloud math  

106 read aloud reading  

107 read aloud science  

108 read aloud social studies  

109 read aloud us history  

110 readaloudmathspanish  

111 readaloudsciencespanish  

112 readaloudushistoryspanish  

113 s504accommela  

114 s504accommmath  

115 s504accommscience  

116 s504accommushistory  

117 screen zoom  

118 turn off all universal tools 

 

 



Atypical Behavior Detection with LSTM 
115 

Table 15:  

Click_action List 

0 NULL_RECORD 

1 ALERT_DIRECTIONS_EXIT 

2 ALERT_DIRE_WARNING_CLOSE 

3 ALERT_DIRE_WARNING_RETRY 

4 ALERT_FINAL_SCORE_UNAVAILABLE_CLOSE 

5 ALERT_INACTIVITY_EXIT 

6 ALERT_LOCK_TIMEOUT_EXIT 

7 ALERT_OFFLINE_WARNING_CLOSE 

8 ALERT_OFFLINE_WARNING_READ 

9 ALERT_PROCTOR_PASSWORD_SUBMIT 

10 ALERT_PROFILE_EXIT 

11 ALERT_SIMULTANEOUS_USER_CLOSE 

12 ALERT_START_TEST_ERROR_CLOSE 

13 ALERT_START_TEST_ERROR_RETRY 

14 ALERT_TIMEOUT_CLOSE 

15 ALERT_TTS_FAILURE_CLOSE 

16 ITEM_BOOKMARK_OFF 

17 ITEM_BOOKMARK_ON 

18 ITEM_CLEAR_CANCEL 

19 ITEM_CLEAR_COMMIT 

20 ITEM_CLEAR_START 

21 ITEM_CONNECTION_match 

22 ITEM_CONNECTION_unmatch 

23 ITEM_DRAG_BOX_DRAG_END 

24 ITEM_DRAG_BOX_DRAG_START 

25 ITEM_HOTSPOT_select 

26 ITEM_HOTSPOT_unselect 

27 ITEM_MATH_EQUATION_CANCEL 

28 ITEM_MATH_EQUATION_OPEN 

29 ITEM_MATH_EQUATION_SELECT 

30 ITEM_MULTIPLE_CHOICE_ANSWER 
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31 ITEM_MULTIPLE_CHOICE_Eliminate 

32 ITEM_MULTIPLE_CHOICE_UnEliminate 

33 ITEM_OPEN_ENDED_BLUR 

34 ITEM_OPEN_ENDED_BOLD 

35 ITEM_OPEN_ENDED_COPY 

36 ITEM_OPEN_ENDED_CUT 

37 ITEM_OPEN_ENDED_FOCUS 

38 ITEM_OPEN_ENDED_ITALIC 

39 ITEM_OPEN_ENDED_PASTE 

40 ITEM_OPEN_ENDED_REDO 

41 ITEM_OPEN_ENDED_SPELLCHECK_OFF 

42 ITEM_OPEN_ENDED_SPELLCHECK_ON 

43 ITEM_OPEN_ENDED_UNDERLINE 

44 ITEM_OPEN_ENDED_UNDO 

45 ITEM_SELECTTEXT_select 

46 ITEM_SELECTTEXT_unselect 

47 ITEM_SELECT_DROP_DOWN_select 

48 ITEM_STIMULUS_SELECT 

49 ITEM_STIMULUS_TOGGLE 

50 ITEM_TILE_BOX_DRAG_END 

51 ITEM_TILE_BOX_DRAG_START 

52 NAVIGATION_ACCESS_CODE_CANCEL 

53 NAVIGATION_ACCESS_CODE_SUBMIT 

54 NAVIGATION_ACCOMMODATION_OPTIONS_CONTINUE 

55 NAVIGATION_DIRECTIONS_ACCOMMODATION_CLOSE 

56 NAVIGATION_DIRECTIONS_ACCOMMODATION_OPEN 

57 NAVIGATION_DIRECTIONS_CONTINUE 

58 NAVIGATION_FINAL_SCORE_CLOSE 

59 NAVIGATION_ITEM_BACK 

60 NAVIGATION_ITEM_JUMP 

61 NAVIGATION_ITEM_NEXT 

62 NAVIGATION_LOCK_RESUME 

63 NAVIGATION_LOCK_SIGN_OUT 
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64 NAVIGATION_PAUSE_CANCEL 

65 NAVIGATION_PAUSE_COMMIT 

66 NAVIGATION_PAUSE_LOCK 

67 NAVIGATION_PROFILE_CHOOSE 

68 NAVIGATION_PROFILE_LOGIN 

69 NAVIGATION_REVIEW_PANEL_CLOSE 

70 NAVIGATION_REVIEW_PANEL_OPEN 

71 NAVIGATION_SECTION_DENIED_CLOSE 

72 NAVIGATION_SECTION_WARNING_CANCEL 

73 NAVIGATION_SECTION_WARNING_COMMIT 

74 NAVIGATION_SHOW_ANSWER_CLOSE 

75 NAVIGATION_SHOW_ANSWER_OPEN 

76 NAVIGATION_SHOW_ANSWER_SELECT 

77 NAVIGATION_TURN_IN_CANCEL 

78 NAVIGATION_TURN_IN_COMMIT 

79 NAVIGATION_TURN_IN_START 

80 NAVIGATION_trigger_START 

81 TOOL_ANSWER_MASKING_DISABLE 

82 TOOL_ANSWER_MASKING_ENABLE 

83 TOOL_ANSWER_MASKING_TOGGLE 

84 TOOL_CALCULATOR_CLOSE 

85 TOOL_CALCULATOR_OPEN 

86 TOOL_CALCULATOR_TOGGLE 

87 TOOL_COLOR_SCHEME_DISABLE 

88 TOOL_COLOR_SCHEME_ENABLE 

89 TOOL_COLOR_SCHEME_OFF 

90 TOOL_COLOR_SCHEME_ON 

91 TOOL_COLOR_SCHEME_TOGGLE 

92 TOOL_CUSTOM_MASKING_CLOSE 

93 TOOL_CUSTOM_MASKING_DISABLE 

94 TOOL_CUSTOM_MASKING_ENABLE 

95 TOOL_CUSTOM_MASKING_OPEN 

96 TOOL_CUSTOM_MASKING_TOGGLE 
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97 TOOL_DICTIONARY_CLOSE 

98 TOOL_DICTIONARY_OPEN 

99 TOOL_DICTIONARY_TOGGLE 

100 TOOL_Eliminator_DISABLE 

101 TOOL_Eliminator_ENABLE 

102 TOOL_GUIDELINE_CLOSE 

103 TOOL_GUIDELINE_DISABLE 

104 TOOL_GUIDELINE_ENABLE 

105 TOOL_GUIDELINE_OPEN 

106 TOOL_MASKING_DISABLE 

107 TOOL_MASKING_ENABLE 

108 TOOL_NOTEPAD_BLUR 

109 TOOL_NOTEPAD_CLOSE 

110 TOOL_NOTEPAD_OPEN 

111 TOOL_PROTRACTOR_CLOSE 

112 TOOL_PROTRACTOR_OPEN 

113 TOOL_REFERENCES_CLOSE 

114 TOOL_REFERENCES_OPEN 

115 TOOL_REFERENCES_TOGGLE 

116 TOOL_REVERSE_CONTRAST_DISABLE 

117 TOOL_REVERSE_CONTRAST_ENABLE 

118 TOOL_REVERSE_CONTRAST_OFF 

119 TOOL_REVERSE_CONTRAST_ON 

120 TOOL_RULER_CLOSE 

121 TOOL_RULER_OPEN 

122 TOOL_RULER_TOGGLE 

123 TOOL_SIGNING_DISABLE 

124 TOOL_SIGNING_ENABLE 

125 TOOL_SKETCH_CLOSE 

126 TOOL_SKETCH_OPEN 

127 TOOL_SKETCH_SELECT 

128 TOOL_TEXT_HIGHLIGHT_CANCEL 

129 TOOL_TEXT_HIGHLIGHT_CANCEL_ALL 
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130 TOOL_TEXT_HIGHLIGHT_SELECTED 

131 TOOL_TEXT_HIGHLIGHT_TOGGLE 

132 TOOL_TTS_DISABLE 

133 TOOL_TTS_ENABLE 

134 TOOL_TTS_OFF 

135 TOOL_TTS_ON 

136 TOOL_TTS_RATE 

137 TOOL_TTS_SELECT 

138 TOOL_TTS_VOLUME 

139 TOOL_ZOOM_DECREASE 

140 TOOL_ZOOM_DISABLE 

141 TOOL_ZOOM_ENABLE 

142 TOOL_ZOOM_INCREASE 

143 TOOL_ZOOM_RESET 

144 TOOL_ZOOM_SET 

145 NAVIGATION_REVIEW_PANEL_START 

146 NAVIGATION_TOOLBAR_START 

147 TOOL_TTS_PAUSE 

148 TOOL_TTS_PLAY 

149 TOOL_TTS_RESUME 

150 TOOL_TTS_SKIP 

151 TOOL_TTS_STOP 

 

Table 16:  

Distribution of Clicks and Predictions across entire dataset 

Action Observed N-

count 

% Prediction N-

count 

% 

Total 4900088 100 4900088 100 

ITEM_MULTIPLE_CHOICE_ANSWER 1238857 25.28 1280009 26.12 

NAVIGATION_ITEM_NEXT 1168210 23.84 1338722 27.32 

ITEM_DRAG_BOX_DRAG_END 240823 4.91 230116 4.7 

ITEM_DRAG_BOX_DRAG_START 228877 4.67 274523 5.6 
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TOOL_ANSWER_MASKING_TOGGLE 199107 4.06 155601 3.18 

TOOL_CALCULATOR_TOGGLE 181773 3.71 84782 1.73 

NAVIGATION_REVIEW_PANEL_CLOSE 161839 3.3 156002 3.18 

NAVIGATION_REVIEW_PANEL_OPEN 161220 3.29 95612 1.95 

ITEM_TILE_BOX_DRAG_END 136896 2.79 134418 2.74 

ITEM_TILE_BOX_DRAG_START 134475 2.74 168177 3.43 

NAVIGATION_ITEM_BACK 120292 2.45 82532 1.68 

TOOL_CALCULATOR_OPEN 117182 2.39 142565 2.91 

TOOL_CALCULATOR_CLOSE 116949 2.39 105236 2.15 

NAVIGATION_ITEM_JUMP 66372 1.35 69357 1.42 

TOOL_SKETCH_SELECT 56437 1.15 64968 1.33 

ITEM_SELECT_DROP_DOWN_select 51261 1.05 49090 1.0 

NAVIGATION_ACCESS_CODE_SUBMIT 42926 0.88 42025 0.86 

NAVIGATION_TURN_IN_START 40195 0.82 46508 0.95 

NAVIGATION_PROFILE_CHOOSE 40023 0.82 58001 1.18 

NAVIGATION_TURN_IN_COMMIT 39564 0.81 39506 0.81 

NAVIGATION_DIRECTIONS_CONTINUE 35018 0.71 36568 0.75 

TOOL_REFERENCES_TOGGLE 29340 0.6 9684 0.2 

TOOL_TEXT_HIGHLIGHT_TOGGLE 23708 0.48 19918 0.41 

ITEM_BOOKMARK_ON 21861 0.45 13915 0.28 

TOOL_SKETCH_CLOSE 20647 0.42 9600 0.2 

TOOL_SKETCH_OPEN 20646 0.42 11310 0.23 

NAVIGATION_PROFILE_LOGIN 20573 0.42 3314 0.07 

TOOL_REFERENCES_OPEN 19597 0.4 25837 0.53 

ITEM_BOOKMARK_OFF 19326 0.39 14986 0.31 

ALERT_PROFILE_EXIT 14968 0.31 17224 0.35 

ITEM_CONNECTION_match 14557 0.3 17930 0.37 

TOOL_REFERENCES_CLOSE 13703 0.28 15243 0.31 

ITEM_HOTSPOT_select 12098 0.25 14756 0.3 

TOOL_TTS_PLAY 11069 0.23 10214 0.21 

TOOL_TEXT_HIGHLIGHT_SELECTED 10827 0.22 14806 0.3 

ITEM_STIMULUS_TOGGLE 7456 0.15 5025 0.1 

TOOL_TEXT_HIGHLIGHT_CANCEL_ALL 6851 0.14 5817 0.12 
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ITEM_HOTSPOT_unselect 6143 0.13 5472 0.11 

ITEM_CLEAR_START 4400 0.09 5 0.0 

NAVIGATION_ACCOMMODATION_OP-

TIONS_CONTINUE 

4279 0.09 5288 0.11 

TOOL_TEXT_HIGHLIGHT_CANCEL 4237 0.09 4435 0.09 

TOOL_GUIDELINE_CLOSE 4165 0.08 4508 0.09 

TOOL_GUIDELINE_OPEN 4152 0.08 225 0.0 

ITEM_CLEAR_COMMIT 3371 0.07 4082 0.08 

TOOL_TTS_PAUSE 2556 0.05 2045 0.04 

ITEM_CONNECTION_unmatch 2133 0.04 91 0.0 

ALERT_INACTIVITY_EXIT 1961 0.04 102 0.0 

TOOL_TTS_STOP 1619 0.03 353 0.01 

NAVIGATION_LOCK_RESUME 1606 0.03 1653 0.03 

TOOL_TTS_VOLUME 1460 0.03 1166 0.02 

NAVIGATION_TOOLBAR_START 1454 0.03 2 0.0 

TOOL_TTS_ON 1289 0.03 376 0.01 

NAVIGATION_ACCESS_CODE_CANCEL 1272 0.03 47 0.0 

TOOL_TTS_RESUME 1265 0.03 1711 0.03 

ITEM_CLEAR_CANCEL 1035 0.02 312 0.01 

NAVIGATION_PAUSE_CANCEL 856 0.02 768 0.02 

NAVIGATION_PAUSE_LOCK 844 0.02 1010 0.02 

NAVIGATION_TURN_IN_CANCEL 816 0.02 45 0.0 

TOOL_TTS_RATE 812 0.02 379 0.01 

TOOL_TTS_SELECT 596 0.01 734 0.01 

ALERT_PROCTOR_PASSWORD_SUBMIT 542 0.01 605 0.01 

TOOL_TTS_OFF 480 0.01 425 0.01 

NAVIGATION_REVIEW_PANEL_START 338 0.01 0 0.0 

TOOL_TTS_SKIP 271 0.01 116 0.0 

TOOL_COLOR_SCHEME_ON 129 0.0 109 0.0 

NAVIGATION_PAUSE_COMMIT 93 0.0 8 0.0 

ALERT_DIRECTIONS_EXIT 68 0.0 0 0.0 

NAVIGATION_LOCK_SIGN_OUT 46 0.0 4 0.0 

NAVIGATION_DIRECTIONS_ACCOMMODA-

TION_OPEN 

46 0.0 0 0.0 
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NAVIGATION_DIRECTIONS_ACCOMMODA-

TION_CLOSE 

46 0.0 47 0.0 

ALERT_START_TEST_ERROR_RETRY 39 0.0 0 0.0 

TOOL_ZOOM_SET 28 0.0 9 0.0 

TOOL_ZOOM_INCREASE 19 0.0 5 0.0 

TOOL_COLOR_SCHEME_TOGGLE 18 0.0 17 0.0 

TOOL_REVERSE_CONTRAST_OFF 18 0.0 3 0.0 

TOOL_ZOOM_DECREASE 18 0.0 9 0.0 

TOOL_CUSTOM_MASKING_OPEN 10 0.0 4 0.0 

ALERT_OFFLINE_WARNING_CLOSE 8 0.0 10 0.0 

TOOL_CUSTOM_MASKING_CLOSE 6 0.0 4 0.0 

ALERT_LOCK_TIMEOUT_EXIT 5 0.0 1 0.0 

TOOL_REVERSE_CONTRAST_ON 5 0.0 0 0.0 

ALERT_SIMULTANEOUS_USER_CLOSE 4 0.0 2 0.0 

TOOL_CUSTOM_MASKING_TOGGLE 3 0.0 4 0.0 

TOOL_ZOOM_RESET 2 0.0 0 0.0 

ALERT_START_TEST_ERROR_CLOSE 1 0.0 0 0.0 

TOOL_COLOR_SCHEME_OFF 1 0.0 0 0.0 

 

Table 17:  

Most Common Next Action Dictionary (Top-1 Choice among all possibilities) 

Action Most Common Next Action 

-1 (begin) NAVIGATION_PROFILE_CHOOSE 

ALERT_DIRECTIONS_EXIT NAVIGATION_PROFILE_LOGIN 

ALERT_INACTIVITY_EXIT NAVIGATION_PROFILE_LOGIN 

ALERT_PROCTOR_PASSWORD_SUBMIT NAVIGATION_DIRECTIONS_CONTINUE 

ALERT_PROFILE_EXIT NAVIGATION_PROFILE_LOGIN 

ALERT_START_TEST_ERROR_RETRY NAVIGATION_DIRECTIONS_CONTINUE 

ITEM_BOOKMARK_OFF NAVIGATION_REVIEW_PANEL_OPEN 

ITEM_BOOKMARK_ON NAVIGATION_REVIEW_PANEL_OPEN 

ITEM_CLEAR_CANCEL ITEM_MULTIPLE_CHOICE_ANSWER 

ITEM_CLEAR_COMMIT ITEM_MULTIPLE_CHOICE_ANSWER 
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ITEM_CLEAR_START ITEM_CLEAR_COMMIT 

ITEM_DRAG_BOX_DRAG_END ITEM_DRAG_BOX_DRAG_START 

ITEM_DRAG_BOX_DRAG_START ITEM_DRAG_BOX_DRAG_END 

ITEM_MULTIPLE_CHOICE_ANSWER NAVIGATION_ITEM_NEXT 

ITEM_SELECT_DROP_DOWN_select ITEM_SELECT_DROP_DOWN_select 

ITEM_STIMULUS_TOGGLE ITEM_STIMULUS_TOGGLE 

ITEM_TILE_BOX_DRAG_END ITEM_TILE_BOX_DRAG_START 

ITEM_TILE_BOX_DRAG_START ITEM_TILE_BOX_DRAG_END 

NAVIGATION_ACCESS_CODE_CANCEL NAVIGATION_PROFILE_CHOOSE 

NAVIGATION_ACCESS_CODE_SUBMIT NAVIGATION_DIRECTIONS_CONTINUE 

NAVIGATION_ACCOMMODATION_OPTIONS_CON-

TINUE 

NAVIGATION_DIRECTIONS_CONTINUE 

NAVIGATION_DIRECTIONS_CONTINUE ITEM_MULTIPLE_CHOICE_ANSWER 

NAVIGATION_ITEM_BACK NAVIGATION_ITEM_BACK 

NAVIGATION_ITEM_JUMP ITEM_MULTIPLE_CHOICE_ANSWER 

NAVIGATION_ITEM_NEXT ITEM_MULTIPLE_CHOICE_ANSWER 

NAVIGATION_LOCK_RESUME NAVIGATION_LOCK_RESUME 

NAVIGATION_LOCK_SIGN_OUT NAVIGATION_PROFILE_CHOOSE 

NAVIGATION_PAUSE_CANCEL ITEM_MULTIPLE_CHOICE_ANSWER 

NAVIGATION_PAUSE_COMMIT NAVIGATION_PROFILE_LOGIN 

NAVIGATION_PAUSE_LOCK NAVIGATION_LOCK_RESUME 

NAVIGATION_PROFILE_CHOOSE NAVIGATION_ACCESS_CODE_SUBMIT 

NAVIGATION_PROFILE_LOGIN NAVIGATION_PROFILE_CHOOSE 

NAVIGATION_REVIEW_PANEL_CLOSE NAVIGATION_ITEM_JUMP 

NAVIGATION_REVIEW_PANEL_OPEN NAVIGATION_REVIEW_PANEL_CLOSE 

NAVIGATION_TURN_IN_CANCEL NAVIGATION_TURN_IN_START 

NAVIGATION_TURN_IN_COMMIT ALERT_PROFILE_EXIT 

NAVIGATION_TURN_IN_START NAVIGATION_REVIEW_PANEL_CLOSE 

TOOL_ANSWER_MASKING_TOGGLE TOOL_ANSWER_MASKING_TOGGLE 

TOOL_CALCULATOR_CLOSE ITEM_MULTIPLE_CHOICE_ANSWER 

TOOL_CALCULATOR_OPEN ITEM_MULTIPLE_CHOICE_ANSWER 

TOOL_CALCULATOR_TOGGLE TOOL_CALCULATOR_OPEN 

TOOL_GUIDELINE_CLOSE TOOL_SKETCH_OPEN 
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TOOL_GUIDELINE_OPEN TOOL_GUIDELINE_CLOSE 

TOOL_REFERENCES_CLOSE ITEM_MULTIPLE_CHOICE_ANSWER 

TOOL_REFERENCES_OPEN TOOL_REFERENCES_CLOSE 

TOOL_REFERENCES_TOGGLE TOOL_REFERENCES_OPEN 

TOOL_SKETCH_CLOSE TOOL_TEXT_HIGHLIGHT_TOGGLE 

TOOL_SKETCH_OPEN TOOL_SKETCH_SELECT 

TOOL_SKETCH_SELECT TOOL_SKETCH_SELECT 

TOOL_TEXT_HIGHLIGHT_CANCEL TOOL_TEXT_HIGHLIGHT_CANCEL 

TOOL_TEXT_HIGHLIGHT_CANCEL_ALL TOOL_TEXT_HIGHLIGHT_TOGGLE 

TOOL_TEXT_HIGHLIGHT_SELECTED TOOL_TEXT_HIGHLIGHT_SELECTED 

TOOL_TEXT_HIGHLIGHT_TOGGLE TOOL_TEXT_HIGHLIGHT_SELECTED 

TOOL_TTS_RATE TOOL_TTS_RATE 

TOOL_ZOOM_DECREASE ITEM_MULTIPLE_CHOICE_ANSWER 

TOOL_ZOOM_INCREASE ITEM_MULTIPLE_CHOICE_ANSWER 

TOOL_ZOOM_RESET TOOL_ZOOM_INCREASE 

TOOL_ZOOM_SET NAVIGATION_ACCOMMODATION_OP-

TIONS_CONTINUE 

NAVIGATION_REVIEW_PANEL_START NAVIGATION_PAUSE_CANCEL 

NAVIGATION_TOOLBAR_START NAVIGATION_PAUSE_LOCK 

 

 


