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Abstract 

The measurement of oral reading fluency (ORF) is an important part of screening assessments 

for identifying students at risk of poor reading outcomes. ORF is a complex construct that in-

volves speed, accuracy, and coherent reading abilities including prosody. This study aimed at 

using between-word-level silence times collected through a computer-based reading assessment 

system to predict words read correctly per minute (WCPM) scores of young readers as the 

measure of their ORF levels. Natural language processing (NLP) was utilized to analyze read-

ing passages to inform the locations of syntactically dependent words, namely, meaningful 

word chunks. Then, silence times before and after the NLP-informed word chunks were used 

to predict WCPM scores via a random forest algorithm. The results revealed that students’ av-

erage relative silence times before and after specific word chunks were good predictors of 

WCPM scores. Also, the model was able to explain more than half of the variation in WCPM 

scores by using the derived silence times and students’ grade-levels as predictors.  

Keywords: oral reading fluency, machine learning, natural language processing, random for-

ests 
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Oral reading fluency (ORF), generally defined as reading quickly, accurately, and 

with prosody, is an essential part of reading proficiency (Fuchs et al., 2001). Accord-

ing to the definition provided by the National Reading Panel (2000), fluency is one of 

the five factors deemed central to reading instruction, and fluency instructions have 

promoted reading growth.  Measures of ORF are robust indicators of comprehension 

and overall reading achievement.  

ORF has mainly been assessed in classrooms as part of curriculum-based measure-

ment of reading (CBM-R) applications. In a typical CBM-R assessment of ORF, stu-

dents read aloud a given grade-level text for a one-minute session, while an assessor 

(such as a classroom teacher) tracks students’ reading performance and records the 

words read incorrectly or omitted. At the end of the reading session, the assessor com-

putes the total number of words read correctly per minute (WCPM), which is a widely 

used metric for ORF assessments. WCPM scores have been shown to have good con-

current and predictive validity in terms of measuring ORF (Francis et al., 2008; Fuchs 

et al., 2001). 

ORF assessment through CBM-R has several benefits including the ease of admin-

istration, which in turn helps classroom teachers provide interventions to students at 

risk of poor reading. Nevertheless, there are also key limitations associated with 

CBM-R applications, including the inaccurate measurement of reading time and other 

sources of construct-irrelevant variance such as the errors made by human assessors. 

More importantly, the traditional approaches to ORF assessment cannot collect other 

types of reading data such as the time taken to read each word, the duration of silence 

between adjacent words, and recorded voice data among others. With the advance-

ments and affordability of computer technologies, ORF assessments can be delivered 

via computer following the current trends in digitally based assessments, which have 

been adopted in large-scale assessments such as National Assessment of Educational 

Progress (NAEP) and Programme for International Student Assessment (PISA).  

In this paper, we demonstrate the use of rich time data in search of advancing the 

assessment of ORF beyond using total reading times and words read correctly at the 

passage level. Our aim is in parallel with approaches in psychometric research that 

use process data to better understand the underlying mechanisms of solving problems 

or simply, answering an item correctly (e.g., He & von Davier, 2016; Qiao & Jiao, 

2018; Shu et al., 2017; Ulitzsch , et al., 2022; Zhu et al., 2016). In the context of ORF 

assessment, we specifically aim to explore empirical evidence to support the claim 

that fluent readers make meaningful pauses in particular locations of reading passages. 

To achieve this goal, we evaluate whether between-word-level silence times have suf-

ficient predictive power in estimation of ORF scores measured in the scale of WCPM. 

We utilize natural language processing (NLP) algorithm for the extraction of text fea-

tures, which are used for the identification of meaningful pausing locations in pas-

sages at the word level. NLP-informed silence times are then aggregated to student-

level and used as predictors of WCPM scores in a random forest regression (RF) 

model. Also, we aim to examine an example tree from the RF regression model to 
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evaluate if longer pauses for some meaningful word chunks are associated with higher 

WCPM scores. 

The structure of the paper is as follows. We first provide a brief background for the 

computer-based ORF assessment system followed by the rationale of using silence 

times as reading process data to be analyzed for exploration of fluent/non-fluent read-

ing characteristics. In the methods section, we explain our sample and measures, the 

derivation of NLP-informed aggregated silence times, and procedure of RF regression 

analyses. Then we present our results followed by a discussion and a limitations and 

future research section.  

 

A Computer-Based ORF Assessment System  

Nese and Kamata1 developed a computer-based ORF assessment system called com-

puterized oral reading evaluation (CORE) (Nese & Kamata, 2021). With CORE, read-

ing passages are delivered in a computer-based environment, which facilitates the col-

lection of reading accuracy and time data at the word level. CORE employs an auto-

mated speech recognition (ASR) engine to decode the reading of students. Then, ASR 

scores accuracy of reading each word as correct or incorrect.  

In addition to more efficient scoring of word-level reading, CORE measures the read-

ing time of each word in the scale of centiseconds (i.e., 1/100 second). Such word-

level precise measurement of reading times cannot be achieved by the traditional 

CBM-R, where human raters keep track of time. Moreover, CORE records the reading 

of students in a voice data format. Such data can also be retroactively used for more 

detailed analyses to inform the assessment of ORF and related reading competencies 

(e.g., Sammit et al., 2022).  

 

Use of Between-Word Silence Times 

Word-level time data collected by CORE is a rich source of information in addition 

to the indicators of passage-level speed (total reading time) and accuracy (total num-

ber of the words read correctly) that are used in traditional ORF assessments. The 

duration of silence or pause, while reading two adjacent words in a passage, can easily 

be derived from the word-level reading times recorded by the computerized system.  

The use of silence times to investigate fluent/non-fluent reading behaviors is not a 

novel approach in reading research. Pausing has been found to be linked to decoding 

behaviors in dysfluent readers (Miller & Schwanenflugel, 2008). Lower skilled 

 

1 Nese, J. F. T. & Kamata, A. (2014-2018). Measuring Oral Reading Fluency: Computerized Oral Reading 

Evaluation (Project No. R305A140203) [Grant]. Institute of Education Sciences, U.S. Department of Ed-

ucation. https://ies.ed.gov/funding/grantsearch/details.asp?ID=1492 
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readers have been found to produce more pausing as they read more complex text 

(Benjamin & Schwanenflugel, 2010) and as they progress through texts (Cowie et al., 

2002). Research has repeatedly shown that students with low fluency scores made 

proportionally more random and grammatically irrelevant pauses than those with 

higher fluency levels, such as pauses due to difficulties in decoding and parsing, or 

physiologically running out of air while reading (Benjamin & Schwanenflugel, 2010). 

They are also reported to make more and longer intra-sentential pauses (Miller & 

Schwanenflugel, 2006, 2008; Schwanenflugel et al., 2004), which can be interpreted 

as excessive and extended pauses made by non-fluent readers.  

On the other hand, reading with minimal pauses would not make a reader fluent as it 

is known that pausing behaviors for fluent readers are associated with meaningful 

word chunks, such as after a phrase-final commas and other grammatically justified 

word chunks (Chafe, 1988). In other words, fluent readers are expected to pause at 

particular locations of a passage, specifically, before and after meaningful word 

chunks such as a complete sentence of a passage. The relationship between meaning-

ful pauses and fluent reading can also be explained through prosodic reading behavior, 

which is reported to be strongly associated with ORF (Valencia et al., 2010).  

In summary, pausing behaviors of readers while reading aloud a text can be used to 

evaluate their fluent reading characteristics. It is also important to note that the loca-

tion and duration of such pauses are all important for such an evaluation. Moreover, 

pausing behaviors should be explored in connection with the characteristics of the text 

read, namely, passages. Below, we present how we approached using the pausing be-

haviors of readers defined by silence times in explaining their relationship with fluent 

reading, which is measured by WCPM scores.  

 

Methods 

Sample 

Reading accuracy and time data were originally collected as part of a larger study 

(Nese & Kamata, 2021). The original sample included 2,094 unique students in 

Grades 2, 3, and 4 in two school-districts in Pacific Northwest in 2017-18 and 2018-

19 academic years. The original data were collected with a total of 150 passages, 

where a student read 10 passages on average. Around 79.5% students were assigned 

in one session of reading assessment, around 20% students were assessed in two ses-

sions, and the remaining small proportion 0.5% were assessed in three sessions. Mul-

tiple sessions of data from the same student were treated as distinct observations, 

which led to a total of 2,543 observations. We discarded inaccurate/outlier observa-

tions from the data, such as the ones with lower than 50% of words read correctly 

counts per passage and with missing end-of-reading time stamps. It is noted that the 

former exclusion was performed to remove the observations for which the WCPM 

value was not computed correctly, mostly due to a problematic session of reading. For 
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the current study, we selected data for 90 passages and a total of 2,278 observations 

of students from the three grade-levels.  

 

Measures 

CORE passages are original works of fiction (Nese & Kamata, 2021), with ±5 words 

of the target word length (medium = approximately 50, long = approximately 85). 

Start and end times were recorded by CORE for each word. In the word-level raw 

data, a student had as many rows of observations as the number of words that he/she 

read in all passages. Each row of observation per student contained the actual word of 

a passage (punctuations were omitted), a 0/1 score for the accuracy of reading that 

word, and time stamps for the beginning and end of the reading for that word. Reading 

time of a word was then computed through the mentioned start- and end-time stamps.  

We processed the raw reading time data to compute silence times between adjacent 

words in each passage. Specifically, we used the end time of a word and the beginning 

time of the adjacent word to compute the silence time between two adjacent words in 

the scale of centiseconds. Between-word silence times were then converted into rela-

tive silence times (RSTs). The RSTs were computed by dividing the between-word 

silence times by the total silence time for each student for the passage that he/she read. 

We excluded the silence time prior to starting to read a passage (i.e., silence time 

before the first word of a passage) from the total silence time. This exclusion was for 

the purpose of preventing confounding effects of initial wait time, or the time taken 

for a student to start reading, as we observed that some students had much longer 

initial silence time. 

The reason we use the RST was that the same actual silence times would not neces-

sarily mean the same magnitude without this transformation, because each reader 

reads in different speed. Thus, silence times relative to a reader’s speed, or more spe-

cifically, to the total of silence time while reading a passage would be a more mean-

ingful measure. Further, the premise was that the silence time in a particular location 

of the passage would be longer than silence times in other parts of the passage when 

a student makes a meaningful pause. As a result of the transformation to the RST, the 

silence time measure was comparable both within and between students. Without this 

transformation, this would have led to a dominant time-fluency relation, such that only 

non-fluent readers would be identified if actual silence times were used as predictors, 

as non-fluent readers had longer actual between-word silence times than fluent read-

ers. 

The outcome variable for ORF was the WCPM score computed from all passages read 

in a session by a student. The derivation of the WCPM scores was as follows: (1) the 

total number of the words read correctly for each student in each session was com-

puted by summing up the word-level 0/1 scores (0 = incorrect, 1 = correct) for all 

passages, (2) the total reading (in seconds) time was computed by summing up all 
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word-level reading times and between-word silence times, and (3) a WCPM score was 

computed by the ratio between (1) and (2) in the scale of per minute.  

 

Text Analysis and Feature Extraction 

Our intention for using the RSTs as predictors of ORF was tied to our hypothesis 

about meaningful pauses made by fluent readers at specific locations in a passage. 

Thus, we did not consider all computed RST measures between any adjacent words 

of all passages that a student read. We employed an NLP algorithm to analyze the 

passages read by students to inform our selection of specific word locations in pas-

sages. In other words, we aimed at identifying sequences of words for which RSTs 

(before and/or after these sequences of words) can be used as predictors. This effort 

can be associated with the use of n-grams in psychometric research (e.g., He & von 

Davier, 2016; Ulitzsch et al., 2022), where subsequences of actions are identified as 

part of feature extraction. In our case, sequences would be the groups of adjacent 

words within a sentence that bear a meaningful word group and/or refer to a gram-

matical structure such as relative clauses. Note that this step of the analyses was per-

formed solely on the text data, where we used the actual reading passages as texts. 

Detailed information about how we linked the NLP-based analyses with the RST data 

at the word level is provided in the following paragraphs.  

The NLP analysis of the passages was performed by spaCy 2.0 package (Honnibal & 

Montani, 2017) in Python 3.7 (Python Software Foundation, 2018). We followed an 

iterative approach during the NLP analyses by starting with basic text mining, includ-

ing identification of stop words and tokenization, where the latter produced tokens 

that helped us associate the meaning of the text to word-level reading data. Then, we 

performed parts of speech tagging to the tokenized words and identified the syntactic 

dependencies associated with tokens. In other words, this last step identified mean-

ingful dependencies between words (i.e., word sequences) in a sentence within each 

passage. Note that we use the term “meaningful word chunks” to refer to instances of 

“text features”, which are the types of syntactic dependencies between multiple adja-

cent words in a sentence. Thus, meaningful word chunks would be instances of ge-

neric text features. 
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Table 1 

Extracted Text Features with Natural Language Processing 

Feature Description 
Obs. 
% Feature Description 

Obs. 
% 

acl clausal modifier of noun (ad-
jectival clause) 16.7 

expl expletive 
13.3 

acomp adjectival complement 66.7 intj interjection 1.1 
advcl adverbial clause modifier 74.4 mark marker 55.6 
advmod adverbial modifier 98.9 neg negation modifier 30 
agent agent 1.1 nmod modifier of nominal 1.1 
amod adjectival modifier 

92.2 
npadvmod noun phrase as adver-

bial modifier 45.6 
appos appositional modifier 13.3 nsubj nominal subject 100 
attr attribute 

53.3 
nsubjpass nominal subject (pas-

sive) 20 
aux auxiliary 95.6 nummod numeric modifier 31.1 
auxpass auxiliary (passive) 

21.1 
oprd object predicate 

8.9 
case case marking 

28.9 
pcomp complement of prepo-

sition 15.6 
cc coordinating conjunction 87.8 pobj object of preposition 98.9 
ccomp clausal complement 68.9 poss possession modifier 92.2 
com-
pound 

compound 
72.2 

preconj pre-correlative con-
junction 2.2 

conj conjunct 86.7 predet predeterminer 16.7 
csubj clausal subject 1.1 prep prepositional modifier 100 
dative dative 15.6 prt particle 38.9 
dep unclassified dependent 2.2 quantmod modifier of quantifier 1.1 
det determiner 100 relcl relative clause modifier 50 
dobj direct object 

100 
xcomp open clausal comple-

ment 77.8 

Note. Obs. % is the percent of passages in which the specific feature was observed at least 

once.  

 

Figure 1 presents an example graphical output of dependencies in one sentence that 

was extracted from one of the passages. The NLP algorithm identified the meaningful 

word chunks within this sentence and visualized the beginning and end of each chunk. 

For example, “Mary played” is referred to as a meaningful word chunk and it was 

identified as a text feature called “nominal subject” (abbreviated as nsubj) by the al-

gorithm. Another word chunk, “in the band”, is identified as an instance of text feature 

called “object of preposition” (abbreviated as pobj). As can be observed in this exam-

ple sentence, identified word chunks may not be mutually exclusive. In other words, 

there were several word chunks starting with the same word but ending with different 

words. Also, some instances of text features such as pobj was observed multiple times 

within a sentence. A total of 40 unique text features were identified in 90 passages 

(see Table 1).  
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Figure 1 

An Example of Extracted Text Features from a Sentence  

 

Note. Descriptions of the text-feature labels are provided in Table 1.  

 

We flagged the beginning (i.e., first word) and end (i.e., last word) of all meaningful 

word chunks in reading passages based on the extracted text features via NLP. These 

flags were then associated with student-level reading data to inform our selection of 

word-level RST measures. For example, we flagged beginning and end of all nominal 

subjects read by a student in all passages he/she administered. As a following step, we 

averaged the before and after RSTs for each type of text feature within a passage per 

student. For example, a student would have two passage-level average RST measures 

(before and after) computed from all instances of nominal subjects that appeared in a 

passage he/she read. This passage-specific averaging allowed us to generalize the RST 

values related to a particular type of text feature from many instances observed within 

a passage. Then, passage-level RSTs before and after each text feature were further 

averaged across all passages for each observation of students’ reading. The second 

averaging at the student-observation level allowed us to generalize the feature-specific 

average RST values over many passages that a student read. As a result, we derived a 

total of 80 student-level average RST variables (2 variables x 40 text features) based 

on all passages they read. Note that this version of the RST dataset was no longer 

linked to specific passages. In other words, the variables of this dataset were the av-

erage RSTs before and after the text features extracted from all passages. Finally, the 

student-level average RST data were merged with the outcome data, namely, student-

level WCPM scores. 

 

Treatment of Missing Data 

Average RST data associated with the extracted text features had missing observations 

due to three major reasons: (1) not all text features appeared in all passages, (2) not 

all passages read by all students, and (3) unmeasured/wrong word-level reading and/or 

silence times existed in the raw data. The latter missingness can be considered as the 

noise in word-level data caused by the computerized data collection system. For ex-

ample, there were some instances in the word-level data, where ASR was not able to 

assign a correct time stamp either for the beginning or end of reading a single word. 

We reported occurrence percentages of the features in Table 1 considering all 90 
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passages. Specifically, these values represent the percent of passages that included at 

least one instance of the relevant feature. Thus, a value of 100%, for example, indi-

cates that the relevant feature observed in all 90 passages at least once2. Also, features 

that observed more frequently across passages are expected to have lower percentages 

of missing observations in the final analysis dataset, which comprised of average RST 

values per student observation. Although not reported here, the percentage of missing 

observations in the final dataset varied between 0% - 94.5% among the 80 average 

RST variables. We excluded average RST variables with more than 30% of missing-

ness. After this exclusion, 49 derived average RST variables remained in the final 

dataset.  

Missing observations for the remaining 49 average RST variables were imputed by 

adopting a random forest (RF) algorithm approach that is implemented in the Miss-

Forest (Stekhoven, 2022) package for R (R Core Team, 2023). The imputation with 

the RF in the MissForest R package follows an iterative approach, where the RF al-

gorithm runs on the observed part to predict the missing observations per variable. 

These RF iterations stop until a pre-defined criterion is met, or the user-defined max-

imum number of iterations is reached.  Also, during the imputation of the test data, 

imputed training data can be used as an additional source of information. More details 

about the implementation of this iterative imputation approach can be found in 

Stekhoven and Buhlmann (2012). 

 

Predictive Analysis  

We used the RF regression algorithm (Breiman, 2001) to predict the ORF outcomes 

measured by the WCPM scores with the average RST measures for extracted text 

features. The RF is a tree-based method, where multiple regression/classification trees 

are built based on randomly sampled subsets of data. Then, individual regression/clas-

sification trees are combined to produce the final predictions or classifications. The 

RF method is referred to as an ensemble machine learning (ML) algorithm, because 

of the combination of multiple prediction models. Also, it is known to produce more 

accurate prediction and classification results compared to single-tree approaches (e.g., 

Breiman, 2001; Hayes et al., 2015).  

Prior to the RF analyses, we created training and test datasets by randomly splitting 

the main imputed dataset by the 75/25 ratio. As a result, sample sizes were N=1,708 

and N=570 for the training and test datasets, respectively. In addition to the 49 derived 

average RST measures, we also used the grade level of students as a predictor. Note 

that the grade level was intended to function as a control variable, since the expected 

values of the WCPM scores would be higher in higher grades. Also, the regression 

 

2 We did not report the frequency of occurrence per feature since the final data were comprised of the 

average relative silence times within and between passages. Thus, if a text feature occurred at least once 

in a passage, related final data observation was not missing.  
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trees may be different between grade levels. Thus, we aimed to capture any differ-

ences between grade levels, in terms of the relations between silence times and the 

WCPM scores. As reported in the result section later, the inclusion of the grade level 

as a predictor did not inflate the R-square values drastically, compared to the model 

without the grade level. 

We used the randomForestSRC package (Ishwaran & Kogalur, 2023) for R (R Core 

Team, 2023), which implements the RF algorithm (Breiman, 2001) for the RF regres-

sion analyses. The default RF algorithm parameters as implemented in the package 

were as follows: the number of trees (ntree)=500, the number of variables for splitting 

at each node (mtry)=1/3 of the number of the predictors, minimum terminal-node size 

(nsize)=5, the number of random splits (nsplit)=10, bootstrap sample size 

(bsize)=63.2% of the original sample size, bootstrap sampling type=sampling without 

replacement, and splitting rule=weighted mean-squared error. As described in Sin-

haray (2016), a total number of ntree decision trees are built based on the bsize per-

centage of bootstrap sampling from the training data, either with replacement or not. 

For each tree, the algorithm selects a random subset of predictors as the size of mtry 

at each split with a total of desired splits as nsplit and the minimum sample size of a 

node as nsize. Then, prediction outputs from each regression tree are averaged over 

ntree trees as the final output of the RF model.  

Following the commonly adopted approach in fitting RF models (e.g., James et al, 

2013; Qiao & Jiao, 2018), we explored the prediction performance of the model on 

training data by manipulating values of the three key parameters: mtry (10 to 30 with 

increments of 2), nsize (10 to 100 with increments of 10), and ratio for bsize (63.2% 

and 80%). We did not manipulate the number of ntrees (used the default value as 500), 

since it has been known to be less effective on performance of the model compared to 

other parameters (e.g., James et al., 2013; Sinharay, 2016). Combinations of various 

values from these parameter factors created a grid of 220 unique conditions. Then, we 

fitted the RF model to the training data with each of these parameter conditions to 

identify the optimal RF parameters for model tuning. The RMSE values from the 

analyses with 220 parameter conditions are graphically summarized in Figure 2. The 

horizontal dashed line is placed on RMSE=25, with the aim of targeting a maximum 

prediction error of 25 WCPM scores in the RF regression model, while seeking opti-

mum parameter values for tuning.  
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Figure 2 

RMSE Change Based on Model Tuning Parameters 

 

Note. RMSE: Root mean squared error. mtry: number of the variables for splitting at each 

node. nsize: minimum terminal-node size  

 

Results summarized in Figure 2 showed that the effect of mtry on RMSE values was 

not as prominent as the effect of nsize (the minimum terminal node size). Also, the 

effect of bsize (the % of the bootstrap sample size) showed a small yet recognizable 

effect. It is generally known that, as the nsize gets lower, the precision of the RF model 

gets better with the expense of deeper trees, which makes the RF model results hard 

to interpret (Sinharay, 2016). Thus, we intentionally decided not to automatically se-

lect the parameters that resulted in the lowest RMSE value. Following our aim for 

RMSE < 25, we selected the optimal parameters as mtry=25, nsize=20, and 
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bsize=63.3%. The RMSE and R-squared values for the tuned model with these pa-

rameters were 25.053 and 0.473, respectively.  We also fitted a model with no grade-

level as a predictor using the same RF model parameters. The RMSE and R-squared 

values from this model fitted to the training data were 26.62 and 0.405, respectively, 

which still demonstrated reasonable fit. 

 

Results 

Ten largest variable importance values based on the final tuned model (fitted to the 

training data) are graphically summarized in Figure 3. Note that these are the permu-

tation importance values, also referred to as the Breiman-Cutler importance (Breiman, 

2001; Ishwaran & Kogalur, 2007). The largest importance value was observed for the 

average RST before the nsubj feature, which is “nominal subject”. Also, the im-

portance of the average RST before nsubj was almost as twice much as the next largest 

value, which was the grade level, although our intention was to include the grade level 

as a control variable due to known differences between grade-specific average WCPM 

values. The order of the remaining 8 most important average RST measures was as 

follows: after object of prepositions (pobj_af), before negation modifiers (neg_bf), 

after predeterminers (predet_af), before open clausal complements (xcomp_bf), be-

fore adjectival clauses (acl_bf), before relative clause modifiers (relcl_bf), before pas-

sive nominal subjects (nsubjpass_bf), and after possession modifiers (poss_af).  

An example of a tree from the grown RF model is shown in Figure 4. We selected the 

first tree out of 500 total trees grown in the entire model. In this regression tree, the 

first node was created based on the grade level, where second graders (indicated with 

a value of 1) were separated from third and fourth graders. The first quartile of WCPM 

scores for second graders was 48.4 in the original data (training + test data). By track-

ing the average WCPM scores lower than the first quartile in the example tree, we can 

see a node of n=24 observations with the average WCPM of 41.99. This group of 

second graders were identified based on having higher average RSTs before ccomp 

(> .838), case (> .425), and advcl (> 1.741). The lowest performing group of second 

graders (n=13) had the average WCPM of 37.37 and was identified through the same 

path of the former group plus through having a higher average RST before dative (> 

1.44) and lower average RST after prt (<= .517). The third quartile value of WCPM 

scores in the original sample was 95.23 for second graders. The highest performing 

second-grade student group in the tree (n=39) had the average WCPM of 107.2 and 

identified as having lower average RSTs before ccomp (<= .838), after prt (<= 1.486), 

and before attr (<= .484); but a higher average RST value before nsubj (> 2.887).  
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Figure 3 

Variable Importance for Top Ten Predictors 

 

Note. “bf” and “af” stands for “before” and “after” that specific text feature, respec-

tively. Explanations of the text features can be found in Table 1.  

 

The first quartile of WCPM scores for the combined group of third and fourth graders 

in the original sample was 73.37. There were several nodes in the tree with average 

WCPM scores varied between 55-72, which were lower than the first quartile. The 

lowest performing group (n=24, average WCPM=54.59) had an average RST before 

nsubj lower than 4.564 and higher average RST values after pobj (>.849), after prt 

(>.383), and after xcomp (> .972), and before dobj (> 1.693). The third quartile of 

WCPM scores for the combined group of third and fourth graders was 120.39. There 

were also several nodes in the tree with average WCPM values larger than this value, 

specifically with a range of 124-151. The best performing group in the tree (n=12) 

had the average WCPM score of 151.29 and identified as having an average RST 

larger than 4.564 before nsubj, and lower than .434 average RST before neg, followed 

by a larger average RST before neg (> .098) and before advmod (> 5.766).  



PREDICTING ORAL READING FLUENCY SCORES 

 

49 

 

 

 

 

 

 

F
ig

u
re

 4
 

A
n

 E
xa

m
p

le
 T

re
e 

fr
o

m
 t

h
e 

R
a

n
d
o

m
 F

o
re

st
 M

o
d

el
 

N
o

te
. 

A
 v

al
u

e 
o

f 
{
1

}
 f

o
r 

g
ra

d
e 

re
fe

rs
 t

o
 s

ec
o

n
d
 g

ra
d

er
s.

 N
o

te
. 

“b
f”

 a
n

d
 “

af
” 

st
an

d
s 

fo
r 

“b
ef

o
re

” 
an

d
 “

af
te

r”
 t

h
at

 s
p

ec
if

ic
 t

ex
t 

fe
at

u
re

, 

re
sp

ec
ti

v
el

y
. 

E
x

p
la

n
at

io
n
s 

o
f 

th
e 

te
x

t 
fe

at
u

re
s 

ar
e 

p
ro

v
id

ed
 i

n
 T

ab
le

 1
. 

 

 



Y. Kara, A. Kamata, E. E. Ozkeskin, X. Qiao, & J. F. T. Nese 

 

50 

Cross-validation analysis conducted on the test data demonstrated promising results 

related to prediction power of average RST measures. Specifically, the correlation 

between the predicted and observed WCPM scores was .764, which corresponds to an 

R-squared value of .584. This implies that the RF model with the grade-level variable 

and average RSTs associated with the extracted text features explained approximately 

58.4% of the variance in the WCPM scores as the measures of ORF. The R-squared 

value for the model with test data without the grade level as a predictor was 0.527, 

which corresponds to 52.7% of WCPM score variance explained with average RST 

measures.  This highlights that the average RST measures were the dominant predic-

tors that explain the majority of the variance in the WCPM scores, compared to grade-

level, which was incorporated into the model as a covariate/control variable.  

 

Discussion 

In this study, we demonstrated the use of rich time data collected through a digitally 

administered ORF assessment. Aiming to find empirical evidence for a claim that flu-

ent readers make meaningful pauses, we attempted to predict the WCPM scores as the 

measures of ORF, by focusing on readers’ silence (i.e., pausing) tendencies while 

reading aloud a text. We performed NLP analyses to extract text features from reading 

passages and derived RST measures associated with these extracted text features. 

Then, we used the RF regression, an ensemble ML algorithm, to examine the predic-

tion power of the RSTs occurred before and after the extracted text features in esti-

mating the WCPM scores as the measures of ORF. 

Our analyses revealed promising results. First, more than 50% of the variance in 

WCPM scores was explained by the trained model. More importantly, it was revealed 

that average RSTs before and/or after specific text features, such as nominal subjects 

(e.g., “she was” or “Mary played”), were important predictors of WCPM scores as the 

measures of ORF. Moreover, the inspection of an example tree from the grown forest 

provided more specific insights, especially for the identification of at-risk students in 

reading performance. For example, the lowest performing second graders were iden-

tified mainly with larger average RSTs before/after specific text features. Larger RSTs 

mean relatively longer pauses while reading. Such consistently large RST before/after 

specific text features can be considered as indicators of poor reading performance. 

The tree also revealed the silence time tendencies of high-performing students in terms 

of reading fluency. The highest preforming second graders were explored to have 

mainly lower average RSTs before/after specific text features. Compared to former 

interpretation for low performers in second grade, the top performers are identified 

with relatively shorter silence times before/after specific text features. Nevertheless, 

for third and fourth graders, the top performer group was identified through some 

larger RSTs before/after specific text features. Thus, it was not always true that fluent 

readers have shorter average RSTs before/after specific text features. This also means 

that fluent readers at higher grades have longer pauses relative to their entire silence 
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time, which supports our hypothesis that fluent readers are expected to perform mean-

ingful pauses at specific locations of a passage.  

In conclusion, our results showed that student-level average RST measures before or 

after specific word chunks identified via NLP algorithm are associated with overall 

ORF scores. Moreover, examination of the regression trees can be used for a more 

detailed exploration of how RST can be used to identify more/less fluent readers by 

looking at specific type of text feature and the associated RSTs. These two conclu-

sions from the current study support the same major aim: searching for the usability 

of rich silence time data for a better understanding and measurement of ORF. Even 

though we approached this aim by showing the prediction power of such derived si-

lence times, another strategy could be incorporating them into a measurement model, 

which can improve the current WCPM-based scoring approach for ORF assessment. 

  

Limitations and Future Research 

There are several limitations for the current study. First, we interpreted a single tree 

from the entire RF model. However, we acknowledge this was a limitation of the study 

since the pattern of the silence tendencies may be different from one tree to another. 

Further, the generalizability of these single-tree observations would be limited con-

sidering the low sample sizes we observed for low/high performing groups of stu-

dents. Thus, the RF model should be used at its entirety for the identification of fluent 

vs non-fluent readers via their predicted WCPM scores in a future study.  

Second, we did not include any other predictors such as word-by-word reading times, 

actual/relative reading times of meaningful word chunks, or word-level reading accu-

racy data (i.e., 0/1 score for reading each word correctly). We believe that incorporat-

ing such predictors has the potential to improve the prediction power of the model, as 

well as better explanations of the association between silence time and the perfor-

mance on ORF assessment. In addition, different ML algorithms can be applied to the 

same data in search of a better predictive model.  

Third, we aggregated the RST measures within each of the 40 unique text feature 

types. By aggregating the RSTs, it helped us understand the association between the 

silence time associated with the extracted text features and the ORF performance. 

However, we acknowledge the loss of information by this approach. In a future study, 

attempts to retain more fine-grained information will be worthwhile by using the RST 

measures differently. For example, observations of RST can be aggregated only at the 

passage level per text feature to retain potential between-passage differences in the 

associations between text features and the ORF performance.  

Fourth, text features extracted by the NLP algorithm were limited to a total of 40 

types. There may be other meaningful word-chunks or single-word locations in pas-

sages, where readers are expected to pause while reading. Examples for such word-

chunks or locations that were not identified by the NLP algorithm include quotes (i.e., 



Y. Kara, A. Kamata, E. E. Ozkeskin, X. Qiao, & J. F. T. Nese 

 

52 

phrases indicated with quotation marks), complete sentences, and article/stop words, 

among others. Future studies can consider extracting more text features. Further, stud-

ies with more passages would contribute to an increased representation of different 

types of text features, which may lead to a better prediction of fluency scores.  

Lastly, we used WCPM scores as the measures of ORF as they were the only available 

measures for the current study. Other measures such as Dynamic Indicators of Basic 

Early Literacy Skills (DIBELS) scores can also be used as the measures of ORF ability 

of young readers. Use of different scores for ORF is considered to provide another 

layer of cross-validation to the usability of silence times in exploring the pausing 

tendencies of fluent and non-fluent readers.  

There is no doubt that digitally based assessments will gain further interest in the field 

of psychometrics for better measurement of various abilities/constructs. With the 

availability and affordability of computer technology, assessments are adopted not 

only in large-scale assessments, but also in classroom-based assessments. In addition 

to key advantages, such as decreasing the burden caused by the administration of pa-

per-pencil tests, digitally based assessments provide new opportunities for the collec-

tion and analysis of richer and new types of data. ORF assessments can also get benefit 

from the availability of rich process data including reading/silence times, text specifi-

cations of passages, and even recorded voice data among others. Thus, there is poten-

tial for further research to be conducted on the effectiveness of using process reading 

data collected by digitally based ORF assessment systems. Moreover, the RST before 

and after meaningful word chunks identified in this study may be useful in improving 

an automated scoring algorithm for the prosody (Sammit et al., 2022), as the mean-

ingful pauses are characteristics of the prosody (Hirschberg, 2002).  
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