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Abstract 

Recently, machine learning modeling has made its way into psychological research. While it is 

used mostly in regression or classification contexts to optimize the prediction of certain varia-

bles, its principles and techniques also have arrived in psychometrics and psychological assess-

ment. In this paper, we present machine learning and optimization concepts that can be used for 

different aspects of questionnaire development and test construction focusing on four central 

issues – item development and item selection, dimensionality assessment in latent variable 

modeling, improving the generalizability of factor models as well as the evaluation of measure-

ment invariance or differential item functioning. By introducing different machine learning 

techniques and newly developed methods, we want to encourage researchers to try out these 

tools and upgrade their psychometrics toolboxes. 
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Introduction 

Over the past years, machine learning (ML) has become more and more popular in 

psychological research. The powerful ML algorithms are used in various areas such 

as personality psychology (Stachl et al., 2020), clinical psychology (Dwyer et al., 

2018), organizational psychology (Goretzko & Israel, 2022), educational psychology 

(Sinclair et al., 2021), and many more. Most of the time, ML models are applied in 

prediction settings, in which they promise to outperform classical (often linear) re-

gression or classification models. When it comes to psychometrics, psychological as-

sessment, and the measurement of latent variables, ML techniques and principles may 

also augment the standard toolbox and improve current practices. In this paper, we 

want to briefly introduce several methods and tools that have been developed recently 

to address common issues in psychological assessment and latent variable modeling - 

A) the item construction and item selection in questionnaire development and test con-

struction, B) the dimensionality assessment in latent variable modeling (especially in 

exploratory factor analysis, EFA), C) the generalizability and interpretability of factor 

models as well as D) the detection of differential item functioning (DIF) and the in-

vestigation of measurement invariance. In the following, we want to discuss new de-

velopments for each of the four aspects (A) - D)) focusing on the potential of ML 

techniques or principles and closely related methods. In doing so, we want to encour-

age practitioners to try out these new methods and add them to their repertoire as they 

provide a new perspective on common challenges in psychological assessment. 

The four aspects (A) - D)) cover different aspects of latent variable modeling that can 

be addressed with machine learning and optimization techniques. Psychological as-

sessment can, of course, also benefit from directly applying ML models for prediction 

tasks (i.e., regression or classification tasks). For a broad overview of personality as-

sessment with ML modeling, for example, and the use of new data sources such as 

digital footprints and mobile devices, we recommend the works of Bleidorn and 

Hopwood (2019), and Stachl et al. (2020, 2021). The assessment of emotions and 

cognitive appraisals that arguably play an important role in the experience and/or the 

emergence of emotions can also be improved by ML prediction models. The works of 

Meuleman and Scherer (2013), Israel and Schönbrodt (2020), or Zhang et al. (2020) 

illustrate how machine learning modeling can be used to predict emotional states, 

cognitive appraisals related to emotional experience or affective reactions on video 

stimuli (especially, when combined with physiological data). Besides emotion and 

personality assessment, new data sources in combination with ML modeling seem to 

be promising in all kinds of prediction contexts in psychological assessment. How-

ever, researchers have to avoid certain pitfalls that may lead to overly optimistic per-

formance evaluation or yield severe misinterpretations (Orru et al., 2020; Yarkoni & 

Westfall, 2017). Since, review articles such as Orru et al., (2020), Stachl et al. (2020) 

or Pargent and Albert-von der Gönna (2019) provide detailed descriptions of predic-

tive modeling approaches in psychological assessment, this paper focuses on the four 

aspects (A) - D)) that are more strongly related to developing measurement models 

for psychological constructs. 
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A) Item Construction and Item Selection 

Item construction, as well as item selection, are usually tedious steps that require sev-

eral runs of rephrasing, testing, and complex checks. Hence, developing psychological 

tests or questionnaires can take a lot of time and resources. Even though ML and op-

timization techniques will not make these steps redundant, they might help to reduce 

the effort of designing an item set and selecting the most suitable indicators. 

 

Automated Item Generation 

Over the past years, natural language processing, artificial text recognition, and text 

production methods have made huge progress (e.g., Jurafsky & Martin, 2019; Mitkov, 

2014). Voice-operated assistants and automatic text translation are just two examples 

of how artificial entities have learned to “understand” speech and text. Trained on 

enormous corpora, modern natural language processing or natural language genera-

tion models are able to write journalistic texts (e.g., Dörr, 2016; Gatt & Krahmer, 

2018), but also poetic texts that when pre-selected by a human were not distinguisha-

ble from poems written by human authors (Köbis & Mossink, 2021). These findings 

suggest that natural language generation models that are trained on an item set (e.g., 

a large pool of BIG-5 personality items) can be used to generate further items to de-

velop a second item set for a parallel version of a scale, or simply to generate a large 

pool of items a researcher then can choose from. While for new or not well-established 

psychological constructs (where no large item pool has already been created) training 

a natural language generation models model does not seem to be too promising, it may 

be worth pursuing considering well-known constructs such as personality traits or 

clinical concepts. For psychological and knowledge tests where it is far easier to de-

velop parallel versions and items with equal difficulties and inter-item correlations, 

the ML approach seems to be less appealing. In education settings, automatic item 

generation (AIG) based on “item models” that are able to variate certain features to 

create different versions of the same item (Gierl et al., 2012) seems to be the more 

auspicious approach. The same may be true for psychological tests - especially intel-

ligence tests - where such AIG models are used to create figural analogy items (Blum 

& Holling, 2018), mazes (Blum & Holling, 2018) or Raven’s Progressive Matrices 

(Wang & Su, 2015). 

Natural language processing or natural language generation models, on the other hand, 

can become suitable AIG models in the context of psychological questionnaires as 

demonstrated by von Davier (2018). Since the long-short-term memory (LSTM) net-

work trained by von Davier (2018) was not tailored to a specific trait (it was trained 

on a large corpus of various personality traits), Hommel et al. (2021) developed a 

transformer-based deep learning model that generates items for more specific (per-

sonality) traits such as risk-taking. Their work shows that natural language generation 

models have the potential to support researchers formulating items and generating a 

large item pool which may help to develop new scales but also simplifies the 
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development of parallel versions for existing scales that have comparable psychomet-

ric properties. Götz et al. (2021) pursue a very similar approach also relying on a 

transformer model to generate new items for psychological scales. Besides the possi-

bility to use AIG models in the development of parallel forms of existing scales, the 

authors discuss their applicability for item generation in different languages and for 

regional varieties. 

 

Short-Scale Development using Optimization Algorithms 

While ML or deep learning models can be used for item generation, optimization 

techniques have been recently applied for item selection and short-scale development 

(Schroeders et al., 2016). With increasing computational power, fitting latent variable 

models becomes faster and easier every year. Hence, it is now possible to try out dif-

ferent item sets, manipulate items, etc., and refit a model with barely any time delay. 

However, the larger an item pool is and the more different objectives a researcher 

wants to achieve (e.g., an excellent model fit and high item reliabilities while having 

very diverse item difficulties at the same time), it becomes impossible to find the “op-

timal” set of variables “by hand”. A greedy approach trying out all combinations of 

items becomes infeasible and the pattern of which items to add to a scale to better the 

model fit can be too complex for a researcher to read. Therefore, optimization algo-

rithms such as the ant-colony algorithm have been used to find optimal item sets for 

shortscales (Olaru et al., 2015). The idea of this approach is inspired by the signaling 

system ants use when searching food resources. At first, the “ants” randomly explore 

different item sets, and those combinations that have desired psychometric properties 

get higher weights for subsequent runs - a so-called pheromone trail guides the fol-

lowing ants, so that they select the items that have shown good properties with a higher 

probability. Over time, suitable items get higher levels of pheromones and are selected 

more often than items that have undesirable properties. Due to its probabilistic nature, 

ant-colony optimization (ACO) is not likely to terminate in local minima but may 

yield different solutions for different starting points which is why it should probably 

be run several times. Olaru et al. (2019) suggest relying on cross-validation to assess 

the stability of the ACO solution as well as to avoid overfitting to the respective data 

set. 

ACO was already used to develop a HEXACO short-scale (Olaru & Jankowsky, 2021) 

as well as measurement invariant short-scales (Jankowsky et al., 2020). Olaru et al. 

(2019) illustrate how ACO can be used to develop short-scales and to select items 

based on psychometric properties. In doing so, researchers are able to optimize the 

model fit of the respective measurement model, the predictive validity of the latent 

variable, or the item reliability. Usually, it is not meaningful to simply optimize one 

measure as the respective optimization procedure will most likely overfit and select 

an item set which cannot be considered representative for a specific psychological 

construct. Therefore, researchers should always consider different objectives for the 

ACO approach, while also not sacrificing the content validity. Focusing on a good 
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model fit and high reliability may result in an item set that is too narrow and does not 

cover all aspects of a psychological construct. 

Content Validity 

ML or deep learning modeling, as well as optimization techniques such as ACO, will 

probably assist researchers when developing questionnaires in future research. They 

can facilitate the troublesome process of designing items and selecting the most suit-

able ones from a large item pool. However, researchers applying these methods must 

have domain expertise and have to be aware of the limitations of the respective tools. 

Assuring content validity should always be of special interest when developing a new 

scale. Solely relying on automation and quantifiable psychometric properties that can 

be used for optimization procedures such as ACO is obviously not advisable. None-

theless, adding these approaches to the “psychometrics toolbox” may help to improve 

psychological assessment. 

 

B) Dimensionality Assessment in Latent Variable Modeling 

In latent variable modeling, especially in EFA, assessing the dimensionality is a cru-

cial and arguably the most far-reaching task a researcher faces. Determining the num-

ber of factors in the EFA has been a challenge for researchers for years and numerous 

so-called factor retention criteria have been developed to tackle this issue. Although 

some methods such as parallel analysis (Horn, 1965) or the minimum average partial 

test (Velicer, 1976) for principal component analysis have shown quite good results 

in a variety of simulation studies (e.g., Auerswald & Moshagen, 2019; Zwick & 

Velicer, 1986) and are therefore recommended by several authors (e.g., Fabrigar et 

al., 1999), research also indicates that there is no criterion among the established meth-

ods that reaches high accuracy under all data conditions (Goretzko et al., 2019). As 

an alternative to conventional criteria that are either based on simulated data such as 

parallel analysis or the similar comparison data approach (Ruscio & Roche, 2012) or 

reference eigenvalues that are calculated considering the sample size and other data 

characteristics such as the empirical Kaiser criterion (Braeken & Van Assen, 2017), 

ML-based methods for dimensionality assessment have been developed - the so-called 

factor forest approach by Goretzko and Bühner (2020, 2022a) and exploratory graph 

analysis by Golino and Epskamp (2017). In the following, we want to briefly intro-

duce these two new approaches to factor retention in EFA. Lately, ML-based methods 

for parameter estimation in factor analytic models have also been developed (e.g., in 

exploratory item factor analysis, Urban & Bauer, 2021). As these methods rely on 

variations of common factor retention criteria (e.g., a tailored version of the Scree-

test, Urban & Bauer, 2021) to determine the number of latent factors, we do not dis-

cuss these approaches in detail. 
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The Factor Forest 

The factor forest is a method that combines extensive data simulation with ML mod-

eling to create a prediction model with a supervised learning approach (Goretzko & 

Bühner, 2020). The basic idea is to build a model on simulated data that (fully) covers 

the relevant conditions of an application context with regard to sample sizes, numbers 

of indicators, numbers of latent variables, communalities, and loading patterns. For 

simulated data, the true dimensionality (i.e., the true number of factors) is known, so 

the ML model can “learn” the relationship between several data features (i.e., charac-

teristics of the empirical data that can be retrieved or calculated for every data set) and 

the number of latent factors. Goretzko and Bühner (2020) simulated approximately 

500,000 data sets varying the sample size, the number of latent and manifest variables, 

the loading pattern, and the inter-factor correlations and calculated 184 features for 

each data set. 

They used the empirical eigenvalues of the correlation matrix, eigenvalues of a re-

duced correlation matrix (based on the common factor model), matrix norms of the 

correlation matrix, inequality measures (such as the Gini-coefficient), and other sum-

mary statistics based on the manifest correlations as well as general data characteris-

tics (e.g., the sample size, the number of indicators) as features and trained a gradient 

boosting algorithm (the XGBoost, Chen et al., 2018) to predict the number of factors 

given the respective features. 

Their trained model reached an out-of-sample accuracy above 99% and outperformed 

common criteria such as parallel analysis or the empirical Kaiser criterion (Goretzko 

& Bühner, 2020). This superiority of the pre-trained machine learning model to com-

mon factor retention criteria was not only found for multivariate normal data (i.e., data 

conditions comparable to the training context) but also for ordinal data (Goretzko & 

Bühner, 2022a). In addition, the authors showed that the factor forest (i.e., the trained 

XGBoost model) not only performs well in simulation studies but also reached higher 

replicability rates in a study with empirical data (Goretzko & Bühner, 2022b). Hence, 

the factor forest approach seems to be promising when it comes to determining the 

number of factors for an EFA and can be seen as an indication that ML modeling may 

help to improve latent variable modeling. 

 

Exploratory Graph Analysis 

Exploratory graph analysis is another promising alternative for dimensionality assess-

ment in factor analyses, even though it is based on network modeling where no latent 

variables are explicitly modeled (for a general introduction to the research area com-

bining network modeling and psychometrics, see, Epskamp et al., 2018 as well as 

Epskamp, 2021). Contrary to EFA and traditional latent variable modeling in psychol-

ogy, exploratory graph analysis is based on a network model called the Gaussian 

graphical model (e.g., Epskamp et al, 2018). Within such a network, each node repre-

sents a manifest variable (e.g., a questionnaire item) and the (standardized) edges 
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(connections between two nodes) reflect the partial correlation between the respective 

variables. In exploratory graph analysis, the Gaussian graphical model is not estimated 

as such (based on the inverted variance-covariance matrix), but the Likelihood is pe-

nalized with a regularization term (for further readings on the graphical LASSO, see 

Friedman et al., 2007) to stabilize the parameter estimates and improve generalizabil-

ity (Golino & Epskamp, 2017). This approach is similar to regularized EFA and reg-

ularized structural equation modeling (SEM) which we describe in the next section 

(“C: The Generalizability and Interpretability of Factor Models”). This regularization 

shrinks the partial correlations towards zero and fosters a sparser network (some edge 

coefficients become zero) which promises to be more replicable across samples (Go-

lino & Epskamp, 2017). Within this sparser network, some clusters of variables may 

form dense subgraphs (also called “communities” in network analyses). Exploratory 

graph analysis relies on a walktrap algorithm (Pons & Latapy, 2006) to determine the 

number of clusters (or subgraphs) that are formed by subsets of the manifest variables. 

Christensen et al. (2020) argue that each of these clusters can be seen as a representa-

tion of an underlying factor, i.e., that the approach can be used to determine the di-

mensionality of factor models as well. Golino et al. (2020) show that its performance 

is comparable to standard procedures such as parallel analysis and the minimum av-

erage partial test and even outperforms them in conditions with high inter-factor cor-

relations. Hence, exploratory graph analysis can be an alternative tool to determine 

the dimensionality for both questionnaire (Christensen et al., 2020) and cognitive test 

data (Golino & Demetriou, 2017). 

 

Applicability of the new Approaches 

Both the factor forest and exploratory graph analysis can be seen as a valuable exten-

sion of the factor retention toolbox as they are able to accurately determine the number 

of factors. While the factor forest promises very high accuracy (arguably the highest 

accuracy by a stand-alone method) when the application context is covered appropri-

ately for the model training, exploratory graph analysis additionally provides infor-

mation about the inter-relations of the indicator variables which can be used for visu-

alizations (e.g., by plotting the sparse network structure with the different communi-

ties). The latter can be helpful for more detailed interpretations and may be used for 

item diagnostics. 
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C) The Generalizability and Interpretability of Factor Models 

The replicability and generalizability of factor solutions is of great interest in psycho-

logical assessment. It has become common practice that EFA results are validated on 

new data using confirmatory factor analysis (CFA; Fabrigar et al., 1999; Goretzko et 

al., 2019) or in a second semi-exploratory step using the exploratory structural equa-

tion modeling framework (Asparouhov & Muthén, 2009). The latter has been devel-

oped as CFA models (especially CFA models implying simple structure) often do not 

fit the data properly (Hopwood & Donnellan, 2010). However, replication attempts 

with exploratory structural equation modeling also reveal that factor structures found 

in one sample using classical EFA, cannot be transferred to another sample. In other 

words, EFA results - especially when rather small samples were used - frequently lack 

(exact) replicability. One reason for this issue may be the signal-to-noise ratio in ques-

tionnaire measures (e.g., Gnambs, 2015) in combination with rather small sample 

sizes. One possible solution could be regularized latent variable models that trade var-

iance against small biases in parameter estimation (for more on this bias-variance 

trade-off, see, for example, Yarkoni & Westfall, 2017). 

 

Regularized Exploratory Factor Analysis 

In regularized EFA, the log-likelihood that is maximized with respect to both loading 

parameters Λ and unique variances Ψ2 in common maximum likelihood estimation 

(ML-EFA) is completed by a penalty term (𝑃(|𝜆𝑖𝑗|)) that penalizes non-zero param-

eter estimates (here non-zero factor loadings): 

𝑙𝑝𝑒𝑛(Λ, Ψ2) =  −
𝑁

2
[𝑝 log(2𝜋) + log|𝛬𝛬𝑇 + 𝛹2| + 𝑡𝑟(|𝛬𝛬𝑇 + 𝛹2|−1𝑆)] − 𝑁 ∑ ∑ 𝛾

𝑘

𝑗=1

𝑝

𝑖=1

𝑃(|𝜆𝑖𝑗|) 

where 𝑝 is the number of manifest variables, 𝑘 the number of latent variables, 𝑁 the 

sample size, 𝑆 the sample variance-covariance matrix, and 𝛾 a regularization parame-

ter that controls the amount of shrinkage (the higher it becomes, the more strongly the 

parameter estimates will be reduced). 

One can see that the penalty term lowers the log-likelihood which means it somewhat 

makes it “more difficult” to maximize the term (to be more precise: it ensures that a 

solution with smaller or fewer non-zero loading parameters maximizes the penalized 

log-likelihood). Hirose and Yamamoto (2014) use the so-called MC+ penalty to ob-

tain a factor solution with loading patterns that are as sparse as possible (i.e., a solution 

with very few cross-loadings and as many zeros as possible in Λ̂). While this penalty 

might be a good choice when very sparse loading matrices can be expected (Hirose & 

Yamamoto, 2015), which might be the case when numerous heterogeneous manifest 

variables are used without the purpose to develop a measurement model for a specific 

latent construct (e.g., in panel surveys that collect data on various topics), other pen-

alties seem to be more appropriate for psychological data and psychological assess-

ment in particular. Scharf and Nestler (2019) evaluated LASSO, Ridge, and 
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ElasticNet penalties in data conditions that are more common in psychological re-

search settings and found the ElasticNet penalty which is a combination of LASSO 

and Ridge regularization to perform best (for more information on the LASSO penalty 

as well as the idea of the ElasticNet, see Tibshirani, 2011 and Zou and Hastie, 2005). 

Besides decreasing estimation variance and thereby potentially increasing the replica-

bility of the factor structure, regularized EFA can be used to foster the interpretability 

of the loading patterns. While common EFA usually requires a two-step approach 

extracting the factors and then rotating the initial factor solution to obtain interpretable 

patterns, regularized EFA may be a promising alternative to factor rotation (Goretzko 

et al., 2019; Scharf & Nestler, 2019). Choosing a rotation method is always an ambig-

uous and very challenging task for a researcher as there is no data-driven way to de-

termine a “correct rotation” (Browne, 2001; Schmitt & Sass, 2011). In fact, rotational 

indeterminacy (i.e., the factor solution is only determined exactly up to a permissible 

rotation, and an infinite set of factor loadings and inter-factor correlations fit the data 

equally well) can only be “resolved” by theoretical considerations (Browne, 2001). 

Adding a penalty term to the likelihood function removes this problem, as regularized 

EFA results are unique up to the order of factors and sign switches (Scharf & Nestler, 

2019). Thus, researchers might consider regularized EFA as an alternative to common 

EFA that does not require them to select an appropriate rotation method for better 

interpretability,while potentially improving the replicability and generalizability of 

the results. 

 

Regularized Structural Equation Modeling 

The concept of regularization via penalized maximum likelihood estimation can also 

be transferred to the SEM framework (Jacobucci et al., 2016). The log-likelihood or 

a related objective function of the maximum likelihood estimation in SEM can be 

completed by a penalty term analogously to the regularized EFA approach (see 

above). Hence, for questionnaire development or similar purposes, CFA models can 

also be fitted with penalized maximum likelihood to obtain more generalizable results 

(Li et al., 2021). As regularization results can be unstable - especially when sample 

sizes are small - stability selection methods have been developed to tackle this issue 

(Li & Jacobucci, 2021). 

Within the regularized SEM framework, different kinds of parameters can be regular-

ized. Depending on theoretical considerations and previous study results, it is possible 

to apply the penalty to all model parameters, but also to the regression coefficients, 

inter-factor correlations or loadings separately (Jacobucci et al., 2021; Li et al., 2021). 

In doing so, researchers are able to only penalize the regression coefficients that de-

scribe relations between a latent variable and several external manifest variables to 

get an idea of which covariates or criteria are related with a specific construct, while 

not regularizing the measurement model which is already theoretically well-founded, 

for example. 
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Just like regularized EFA, regularized SEM is also useful with many manifest varia-

bles (Deng et al., 2018) and in small sample size scenarios (e.g., Jacobucci et al., 

2019). 

While the LASSO penalty can be unstable with small samples, though (Li & 

Jacobucci, 2021), its variable selection properties come into play in large-scale sur-

veys with numerous variables that are either integrated into a measurement model or 

are assumed to be related to different latent variables. In panels with comparably high 

sample sizes, regularized SEM promises to carve out patterns that should be more 

robust to sampling errors than those provided by common SEM. 

 

Regularization in Latent Variable Modeling 

First simulation studies (e.g., Scharf & Nestler, 2019) show auspicious results for reg-

ularization in latent variable modeling. As described above, both regularized EFA and 

regularized SEM can add valuable aspects to the psychometric toolbox, as they prom-

ise to increase the replicability and generalizability of factor solutions, while also 

providing an alternative to the two-step EFA approach that requires researchers to 

select a rotation method. 

 

D) Differential Item Functioning and Measurement Invariance 

Measurement invariance and differential item function (DIF) are always a concern 

when developing psychological scales and constructing tests. While there are estab-

lished methods for both item response theory (IRT) and the SEM framework (e.g., 

Meade & Lautenschlager, 2004; Schoot et al., 2012), these approaches require re-

searchers to define subgroups for which measurement invariance is tested or to select 

variables that are considered when modeling DIF. Hence, detecting DIF and non-in-

variance can be challenging, especially when researchers want to address it right from 

the beginning of the test construction process (i.e., considering measurement invari-

ance during item selection). ML tools, first and foremost model-based recursive par-

titioning, can help to tackle DIF and measurement invariance during questionnaire 

development. In the following, we want to briefly talk about IRT model trees that 

apply recursive partitioning to IRT models which can be used to detect DIF and re-

lated subgroups for which the model structure differs. We also present SEM trees that 

combine recursive partitioning and SEM which can be used to find subgroups with 

differing measurement models (or structural models). 

 

IRT Model Trees and Regularized IRT Models 

IRT model trees (not to be confused with IRTrees that are designed to model multiple 

response processes in categorical data, see, for example, Plieninger, 2021) are able to 

detect DIF in IRT models exploring several covariates and interactions or 
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combinations of covariates effectively without requiring the researcher to define sub-

groups in advance. This data-driven way of assessing DIF can be applied automati-

cally to models for dichotomous variables with Rasch model trees (Strobl et al., 2015) 

as well as polytomous data with partial credit trees (El-Komboz et al., 2014; Komboz 

et al., 2018). In both cases, the respective tree is built in four steps. First, the model 

parameters (e.g., threshold and item parameters in the partial credit model) are esti-

mated for the full sample. Then, the stability of the item and/or threshold parameters 

is assessed given all covariates (e.g., gender or age that are usually considered in DIF 

analyses, but also other variables that are collected for this sample such as personality 

measures can be used here). In a third step, if instabilities are deemed significant (for 

further information about the internal significance tests, see Komboz et al., 2018; 

Strobl et al., 2015; Zeileis et al., 2008), the ideal split point is determined for the co-

variate that promises the greatest improvement in model fit and the sample is divided 

into two subsamples (binary splitting). These steps are then repeated until no signifi-

cant improvements (i.e., no further splits) can be found. This way, a tree structure is 

grown that divides the sample into several groups, for which the parameters of a Rasch 

or partial credit model are estimated separately. In case no DIF is present, no splitting 

should be done and the respective model is fitted to the whole data set, but if there are 

subgroups that substantially differ with regard to item comprehension, for example, 

the Rasch model or partial credit trees promise to find the covariates or interactions 

of covariates and the best cut-points in numeric DIF variables that best separate these 

subgroups (e.g., Strobl et al., 2015). 

A different approach to detecting DIF in IRT models has been suggested by Tutz and 

Schauberger (2015). Their idea was to replace the item parameters of the model with 

a linear term that includes covariates that potentially explain DIF (typically, variables 

such as age, gender, etc.). By penalizing the log-likelihood (see also the discussion of 

regularization in the paragraphs above), the resulting model with way more parame-

ters than the initial Rasch model can still be estimated. Using a LASSO penalty with 

its variable selection property (e.g., Tibshirani, 2011), all regression coefficients that 

belong to covariates which cannot explain DIF are shrunk to zero. Schauberger and 

Mair (2020) extended the approach to the ordinal (generalized) partial credit model, 

while Belzak and Bauer (2020) evaluate its potential to identify DIF in the 2-PL 

model. A slightly different, yet conceptually similar approach was proposed by Magis 

et al. (2015). Contrary to Tutz and Schauberger (2015), they use the item sum-scores 

as a proxy for the latent variable and model DIF with a logistic regression with 

LASSO penalty. An advantage of these regularization approaches is that DIF is di-

rectly modeled and that a functional relationship between DIF covariates and the ac-

tual item parameters (or item answers in case of Magis et al., 2015) can be established. 

The IRT model trees, on the other hand, explicitly reveal subgroups that differ with 

regard to the model parameters and do not need to set the type of relationship (linear 

or non-linear) between DIF covariates and item or threshold parameters. 
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SEM Trees 

Model-based recursive partitioning can also be used in the SEM framework to build 

so-called SEM trees (Brandmaier et al., 2013). While measurement invariance is usu-

ally tested with multi-group CFA (French & Finch, 2008), SEM trees promise to de-

tect subgroups defined by one or more covariates and their interactions for which the 

measurement models differ (Finch, 2017). Although SEM trees are intended to pre-

dominantly assess subgroup differences in the structural model (i.e., to find subgroups 

for which the relations among latent variables differ depending on covariates such as 

age, gender, or personality), it can also be used as a more exploratory approach to 

measurement invariance testing by focusing on the measurement models of latent var-

iables. The general idea of SEM trees is quite similar to the IRT model trees described 

above. 

First, the SEM model is fitted to the complete data set (the SEM could be a simple 

factor model to perform a CFA if the researcher wants to explore measurement 

[non]invariance). In a second step, instabilities in the parameter estimates with regard 

to all covariates are assessed, and then, the data set is split given the covariate and the 

respective cut-point that yield the highest improvement in model fit. This procedure 

is repeated recursively until no more significant improvements can be made (Brand-

maier et al., 2013). 

Both Rasch model trees (Strobl et al., 2015) and SEM trees (Brandmaier et al., 2013), 

as well as other approaches relying on model-based recursive partitioning, face the 

problem of multiple testing when determining which splits lead to a significant im-

provement in model fit and when to stop growing the tree. Since the common Bonfer-

roni correction method is rather conservative and adversely affects the statistical 

power to find relevant subgroups, Brandmaier et al. (2013) prefer cross-validating 

SEM trees when determining split points and addressing the problem of multiple test-

ing. More generally speaking, cross-validation may also help to find a stable solution 

that replicates and generalizes to other samples in different settings. Single trees are 

often regarded as somewhat unstable (James et al., 2013) which is why Brandmaier et 

al. (2016) also developed an ensemble method combining several trees - the so-called 

SEM forests. When exploring differences in the structural model of an SEM, high 

stability and replicability may be of uppermost interest, so that SEM forests are argu-

ably more powerful than simple SEM trees. However, when it comes to finding sub-

groups with different measurement models - which can be seen as the first step in a 

measurement invariance analysis as well as an inherently exploratory approach, SEM 

trees are way easier to interpret and define these subgroups by providing clear cut-

points for selected covariates. SEM forests, on the contrary, are based on averaged 

decision trees and are therefore not accessible for researchers. Accordingly, SEM trees 

may be preferable for measurement invariance analyses. 
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EFA-Trees 

The issue of measurement invariance is often not considered during the first steps of 

questionnaire development, because there are no statistical tools for investigating 

measurement invariance at an early stage of this process. When selecting variables 

and redefining a latent concept using EFA, measurement invariance is not addressed. 

The SEM tree or model-based recursive partitioning framework can be used to change 

that, though. Instead of a CFA model, the common EFA model can be integrated with 

the model-based recursive partitioning framework to explore measurement invariance 

when selecting items and doing the first solely exploratory analyses during test con-

struction. The procedure of such an EFA tree would be comparable to the SEM tree. 

First, the EFA model is estimated for the full sample. Then, instabilities in the param-

eter estimates (e.g., the factor loadings) are assessed, and in case of significant insta-

bility, the best split variable and the ideal cut-point are used to find subgroups. This 

process is repeated as long as significant improvements in model fit are detected. 

 

Recursive Partitioning for Exploratory Analyses 

Using model-based recursive partitioning, trees can be built that detect and illustrate 

DIF or non-invariance of measurement models. The approach has been adopted in 

both IRT and classical test theory making it useful for dichotomous, polytomous as 

well as continuous variables. While common confirmatory approaches such as multi-

group CFA are still necessary to test for measurement invariance or DIF, these tree-

based methods can be really powerful in finding subgroups and developing hypothe-

ses which groups to test in a subsequent confirmatory analysis on new data. 

 

Conclusion 

Although ML modeling and related techniques will not entirely change psychometrics 

by solving all problems with common methods, they promise to enrich our toolbox 

when designing psychological scales and modeling latent concepts. This paper is not 

intended as a call to immediately implement all these methods and completely rely on 

ML-based psychometrics but rather to invite researchers to explore new directions for 

familiar challenges. We are convinced that the presented ML concepts and modern 

methods are meaningful ways to tackle these challenges and that the psychological 

assessment research will benefit from applying them. Nonetheless, it has to be clearly 

stated that, no matter how promising these methods may be, psychological domain 

knowledge will still be needed - especially considering the assessment of (content) 

validity and the relevance of specific measures.  
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