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Can a multidimensional hierarchy of skills 
generate data conforming to the Rasch 
model?  
A comparison of methods 
Wolfgang Schoppek1 & Andreas Landgraf2 

Abstract 
The question of the dimensionality of intelligent performance has kept researchers occupied for 
decades. We investigate this question in the context of learning elementary arithmetic. Our assump-
tion of a polyhierarchy of skills in arithmetic (HiSkA) predicts a multidimensional structure of test 
data. This seems to contradict findings that data collected to validate the HiSkA conformed to the 
Rasch model. To resolve this seeming contradiction, we analysed test data from two samples of 
third graders with a number of methods ranging from factor analysis and Rasch analysis to multi-
dimensional item response theory (MIRT). Additionally we simulated data sets based on different 
unidimensional and multidimensional models and compared the results of some of the analyses that 
were also applied to the empirical data. Results show that a multidimensional generating structure 
can produce data conforming to the Rasch model under certain conditions, that a general factor 
explains a substantial amount of variance in the empirical data, but that the HiSkA is capable of 
explaining much of the residual variance. 
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Introduction 

Since the days of Spearman and Thurstone researchers have been debating if intelligent 
performance can be explained by one general ability factor (Spearman, 1904, 1927) or if 
it is the result of a complex interplay of different independent abilities (Thurstone & 
Thurstone, 1941). In the present paper, we analyse the dimensionality question in the 
context of learning elementary arithmetic. As a basis for selecting practice problems in 
our software “Merlin’s Math Mill” (MMM) we had developed a hierarchy of basic 
arithmetic skills (HiSkA). In several experiments we tested the progress pupils made 
when using the software with a test consisting of diverse problems, and found most of 
the test results to be consistent with the Rasch model (Schoppek & Tulis, 2010, Schop-
pek, subm.). Since the HiSkA is a polyhierarchic structure (a directed acyclic graph) 
containing independent substructures, the question arises, if this finding contradicts the 
assumptions of the HiSkA. More generally, we want to answer the question if a multidi-
mensional hierarchy of skills can generate data that are consistent with the unidimen-
sional Rasch model. 
A look at current discussions of such questions shows that they still cannot be answered 
unambiguously. Since models are always simplifications of reality and data never fit 
models perfectly, it depends on research goals how results are interpreted. We can ob-
serve this in the recent debate between Rindermann (2006) and representatives of the 
German PISA consortium about what international student assessment studies really 
measure. Rindermann (2006) focuses on the high intercorrelations of the scales for read-
ing, math, and science and found strong first factors in principle component analyses of 
reanalysed data. He concludes that international student assessment studies measure 
mainly general cognitive abilities, and corroborates his conclusion with content analyses 
of test items, showing that similar skills are required in items of all subscales. Baumert, 
Brunner, Lüdtke, & Trautwein (2007) respond that finding a strong g-factor is not suffi-
cient for identifying it with intelligence, and that Rindermann (2006) used obsolete 
methods. They claim that international student assessment studies measure the results of 
cumulative processes of knowledge acquisition, conceding that intelligence plays an 
important role in these processes. To substantiate their position, they report a comparison 
between two structural equation models, a simple g-factor model, and a nested factor 
model that assumes additional domain specific factors besides a g-factor. Although the 
latter model fits the data better than the former and shows that the specific factors ac-
count for significant proportions of variance, the results can also be interpreted as sup-
porting Rindermann’s view, because the g-factor is still clearly the strongest one! This 
dispute shows that the decision if an achievement is based on a single dimension or on 
multiple dimensions cannot be decided simply by using the correct method. In our view, 
the results of different methods should be compared.  
As regards the general question if items that are sensitive to differences in many dimen-
sions can be fitted by a unidimensional model, Reckase and Stout (1995) have shown 
that this is the case when the items are sensitive to the same composite of skills and 
knowledge (see also Reckase, 2009). This occurs when the skills are highly correlated 
with each other. However, when the skills are elementary and hard to measure sepa-
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rately, the question about their correlation cannot be answered empirically. This is true 
for elementary arithmetic problems, where even simple equations draw on more than one 
skill. For example, the skill of crossing the tens boundary cannot be assessed without 
concurrently assessing counting skills or the knowledge of arithmetic facts about the 
decomposition of numbers. Therefore, we embedded simulations in our research strategy. 
This allowed us to analyse simulated data whose generating structure is exactly known 
with the same methods as the empirical data. 
A research strategy of comparing simulated with real data is only possible when an exact 
theory is at hand. A good example for the value of theories in the context of the dimen-
sionality question of arithmetic skills is presented by Arendasy, Sommer, and Ponocny 
(2005), who tested the predictions of four theories about solving different arithmetic 
word problems of the “compare” type (Riley, Greeno, & Heller, 1983). Compare word 
problems in general are the most difficult of all basic word problems involving addition 
and subtraction (Riley et al., 1983; Stern, 1994). However, there are subtle differences in 
difficulty between various subtypes, which have been explained differently by a number 
of theories. Arendasy et al. (2005) reviewed these theories and derived specific predic-
tions regarding person homogeneity and item homogeneity of a set of different compare 
word problems. Person homogeneity means that an IRT model (such as the Rasch model) 
estimates the same difficulty parameters of the items, regardless of the subsample the 
estimation is based on. Item homogeneity is given when the estimated person parameters 
do not depend on the subset of items the estimation is based on. For example, the con-
struction integration theory by Kintsch (1988; Kintsch & Lewis, 1993) predicts no item 
homogeneity when comparing two subtypes of problems, because different cognitive 
processes are assumed to be required for solving each subtype. At the same time, person 
homogeneity (based on different sample partitioning criteria) is predicted, because the 
differences between the subtypes of problems are assumed to be the same for all subjects. 
For testing these predictions, Arendasy et al. (2005) used nonparametric goodness-of-fit 
tests (T-statistics) that were introduced by Ponocny (2001). In a study with n=100 second 
graders the application of T-statistics revealed person homogeneity with respect to nine 
criteria for splitting the sample, but rejected item homogeneity between two specific 
subtypes of compare word problems. Without the theories, the finding would be qualified 
as ambiguous. However, the construction integration theory by Kintsch (1988; Kintsch & 
Lewis, 1993) predicts exactly this pattern of results. The study also demonstrates that it is 
inappropriate to rely on a single test for proving model validity. 
The present analyses are structured and guided by the HiSkA, a fine-grained theory how 
achievement in different computation and word problems can be explained. Hence we 
primarily follow a deductive approach. Inductive methods are included to complement 
the deductive conclusions. In our attempt to test the HiSkA, we compare the results of a 
broad range of methods. This includes simulation of data sets based on the HiSkA and 
competing models and comparison of analyses between simulated and collected data. We 
perceive our work as a contribution to strengthen the contact between content oriented 
research and methodological research. 
In the following, we introduce the hypothetical hierarchy of arithmetic skills, report some 
data collected for its empirical validation, and present the results of our analyses in order 
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to explore the question if a multidimensional hierarchy of skills can generate data con-
forming to the Rasch model. 

A hierarchy of skills for arithmetic – HiSkA 

For basic arithmetic it is possible to specify hierarchies of skills that are derived from the 
domain structure. These hierarchies are useful for planning instruction, specific diagnosis 
of knowledge, and selection of appropriate practice problems. The underlying idea of 
decomposing complex skills was introduced by Gagne (1962), and has been validated in 
a number of successful applications in the 1960s and 1970s (e.g. White, 1976). The idea 
has recently again become subject of debate in the “math wars” (Anderson, Reder, & 
Simon, 2000). We have developed a hierarchy of skills for arithmetic (HiSkA) as a basis 
for the problem selection algorithm in the adaptive training software “Merlin’s Math 
Mill” (MMM, Schoppek & Tulis, 2010). MMM automatically selects practice problems 
that are adequate to the current skill level of the user.  
Starting point of the development was a systematic classification of addition/subtraction 
problems according to their attributes. Beginning with the simplest problems, we identi-
fied different procedures for solving these. Thereby we found a close correspondence 
between problem attributes and skills that are sufficient to solve them and defined pre-
requisite relations between skills and classes of problems. In classifying problems and 
skills we could resort to a large body of literature about the difficulty of elementary 
problems (Parkman & Groen, 1971; Kornmann & Wagner, 1990), about addition strate-
gies (e.g. Torbeyns, Verschaffel, & Ghesquiere, 2005), about the difficulties of subtrac-
tion (e.g. Seyler, Kirk, & Ashcraft, 2003), and about recognising and utilising inverse 
relations between operations (Canobi, 2005; Gilmore & Bryant, 2008). The complete 
hierarchy is pictured in Figure 1. 
It turned out, that some of the simple subskills occurred repeatedly in more difficult 
problems, whereas other subskills seem to be replaced by more sophisticated ones (as 
described by Bergan, Stone & Field, 1984). For example, crossing the tens boundary 
initially involves the decomposition of numbers, such as 7+5 = 7+3+2. Once the solu-
tions can be retrieved from memory, the decomposition is no longer necessary. 
The hierarchy consists of nodes representing classes of problems that can be solved with 
the same set of skills. The nodes are connected through links representing surmise rela-
tions (Doignon & Falmagne, 1999), meaning that if a person masters a node then he/she 
also masters the nodes connected downwards. In the instructional context, this also 
means that the problems represented by a node should only be tackled when the prede-
cessor nodes are mastered. 
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The nodes are grouped in levels. A new level is established by the following criteria: 
A new subskill is necessary for solving a problem type3.  
Several subskills are newly combined. 
Problems are classified according to the following attributes:  
Length (L): 5 or 7 elements (including operator and equal signs) 
Number range (NR): up to 10, up to 20, up to 100, up to 1000, more than 

1000 
Operator (OP): plus, minus (problems with length 7: same or mixed) 
Placeholder (PH): Position 1, 3, 5, 7 (positions of operator and equal 

signs are also counted) 
Crossing the tens boundary (CT): with or without  
N of digits of smallest number: 1, 2, (3) 
 
The following description contains the rationale for establishing a new level and sample 
problems for the first three levels. The complete description can be found in the appen-
dix. Attributes of the problems that can be solved on the respective level are given in 
parentheses.  
 
Level 1 
New: skill decomp Decomposition of numbers between 2 and 10 
 Special case  Decompositions of 10 
 useful concept   Understand that 2 + 5 = 5 + 2 
 
Level 2 
New: skill igno  Ignore the tens position (when adding up to 20 without CT) 
   11 + 8 = _ 
New: skill subtra:  Subtraction / completion (based on decomp)  
   9 – 4 = _ , 4 + _ = 9 
 
 
 
                                                                                                                         
3 On introduction of a new subskill, other requirements are kept as simple as possible. For example, when 
introducing the subskill „reversal of operators”, using subtraction problems with placeholder at position 1, 
only problems without crossing the tens boundary are provided, even though the subskill “crossing the 
tens boundary” was introduced before. This has the effect that some problems on higher levels turn out to 
be easier than other problems on lower levels. 
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Level 3 
New: skill subtra3 Application of decomposition on subtraction with PH 3  
   8 – _ = 5 
New: skill ctb  Crossing the tens boundary (based on decomp)   
   (addition, PH 5)  
   7 + 6 = _ 
 
Level 1 is defined by the skill of decomposing the numbers between 2 and 10 (shorthand: 
“decomp”). At this level, it does not matter if students perform the skill by counting or 
by retrieval. Most children, however, quickly learn to retrieve these facts from memory 
(Geary, Hamson, & Hoard, 2000). The decompositions of 10 are particularly important 
for crossing the tens boundary. We believe that it is favourable to gain an understanding 
of commutativity already at this level. 
The new skills “ignore the tens position” and “subtraction” make up Level 2. Note that 
these skills are not yet combined at this level. The subtraction skill is based on the under-
standing that the subtraction c-a=? and the completion a+?=c are both based on the same 
triple of numbers (a, b, c, where a+b=c), which in turn depends on the decomp skill. 
At Level 3, the new skills “subtraction with placeholder at position 3” (subtra3) and 
“crossing the tens boundary” (ctb) are introduced. The subtra3 skill is an extension of the 
subtra skill from Level 2 to a new problem type. The ctb skill draws heavily on the de-
comp skill as two decompositions have to be performed to solve the corresponding prob-
lems (e.g. for solving 7+5, we assume the decomposition of 10=7+3 and the decomposi-
tion 5=3+2). 

Inclusion of other problem types 

Other problem types, such as word problems or multiplication and division problems 
were included in the addition-subtraction backbone according to the following principles:  
Addition / subtraction word problems: We defined mastery of the underlying computa-
tion problem as a condition for presenting the respective word problems (see Fuchs, 
Fuchs, Compton, Powell, Seethaler, Capizzi, Schatschneider, & Fletcher, 2006 for a 
rationale of this decision). Most nodes in the hierarchy separate the easier change and 
combine problems from the compare problems. 
Multiplication / division problems: We ordered the nodes according to the multiplicands, 
starting with 1, 2, 5, and 10, continuing with 3, 4, 6, and 8, and finishing with 7 and 9. 
Multiplication / division word problems: We defined mastery of the underlying computa-
tion problem as a condition for presenting the respective word problems. Subsequently, 
word problems with remainders are presented. 
Arithmetic puzzles: Problems typically starting with “I think of a number” were linked 
into the hierarchy at places that represent mastery of the underlying operations. 
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Complex word problems: These problems, which involve more than one calculation step, 
were also linked into the hierarchy at places that represent mastery of the underlying 
operations. Additionally, they were ordered according to difficulties that originate from 
the number of calculation steps or from specific features, such as the occurrence of re-
mainders or the peculiarities of pagination (e.g. reading from page 5 to 10 means reading 
6 pages). 

Theoretical foundations of the applied methods 

In this section we briefly introduce the theoretical foundations of some of the methods 
we applied to our data. We do not discuss reliability analysis and principal component 
analysis because we assume that most readers are familiar with these methods. 

The Rasch model 

The Rasch model (RM, Rasch, 1960) is probably the most fundamental in a family of 
models that is characterised by assuming explicit relations between the ability of a person 
and the probability of solving specific test items. This family of models is known as 
item-response theory. The Rasch model assumes an unidimensional person parameter θv, 
representing his/her ability, and an item parameter εi, characterising the difficulty of the 
item on the same scale. The probability that a person v solves item i is specified by the 
following logistic equation:  

 exp( )(" " | , )
1 exp( )

v i
v i

v i

P θ − ε+ θ ε =
+ θ − ε

 

If the RM is true for a set of items, item parameters are estimated to the same values 
regardless of the sample this estimation is based on. Also, estimates of person parameters 
are largely independent of the subset of items used to estimate them. This property – 
referred to as “specific objectivity” – has been utilised for tests of model conformity (see 
Fischer, 2007 for an overview). A commonly used one is Andersen’s likelihood-ratio 
(LR) test (Andersen, 1973), which evaluates the differences between the CML estimates 
of the item parameters in different subgroups. The test statistic has an asymptotic χ2-
distribution. When the LR test indicates significance, the H0 of assuming RM conformity 
must be rejected. The other aspect of specific objectivity is picked up in the Martin-Löf 
test (Martin-Löf, 1973), which assesses item homogeneity by comparing the likelihoods 
of two subsets of items with the likelihood of the complete test. 
It is common practice to perform model checks based on these methods to show that a set 
of items conforms to the RM, which means that a single dimension is sufficient to ex-
plain individual differences in test results (e.g. Fischer, 1974). However, these tests as-
sume the validity of the model as H0, resulting in a high type-II-risk (accepting H0 while 
in the population the H1 holds) when the type-I-risk level is set to the usual p < .05 
(Fischer, 2007). Therefore, power analyses should be performed, which consider both 
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types of risk as well as the sample size, to get a more differentiated answer to the ques-
tion about unidimensionality. Because according to Kubinger (2005), there is no table 
relating power to sample size for Andersen’s LR test, we performed simulations to ex-
plore its power to detect deviations from unidimensionality under different conditions. 

Multidimensional item-response theory – MIRT 

Since the HiSkA defines hypotheses about the skills required to solve specific classes of 
items, and about the independence between some of these skills, a multidimensional 
model of the relationship between the skills and the probability of solution can be speci-
fied and tested directly. The theory underlying the methods for testing such models is 
known as “multidimensional item-response theory” – MIRT (Reckase, 2007). All MIRT 
models assume a space made up by a number of dimensions that represent latent traits of 
persons. A person’s position in that space is specified by the vector of his/her values on 
each of the dimensions. Like the RM, most MIRT models assume logistic functions 
relating probability of solution to the position on the latent traits. There are compensatory 
models, assuming that high ability in some skills can compensate for lower ability in 
other skills, and non compensatory models. We applied a compensatory model because 
according to Reckase (2007) both models predict similar probabilities (in the regions of 
most interest) while the former are mathematically more tractable.  
For our multidimensional analysis we used the NOHARM program by Fraser and 
McDonald (2003). NOHARM approximates the logistic model with the normal ogive 
function for estimating the parameters of a compensatory MIRT model. Omitting the 
guessing parameter, the model equation can be written as: 

 0( 1| } [ ' ]j j jP y N f f= θ = + θ , 

where N[.] is the normal distribution function, θ is a vector of latent traits, fj0 = -ajbj 
(where aj is the discrimination parameter and bj is the difficulty parameter), and fj is a 
vector of coefficients. The elements of fj can be interpreted as loadings of item j on the 
assumed dimensions. The procedure for estimation of parameters is a variant of the one 
described by McDonald (1982). 
For testing a model, an item × skill matrix, the so called Q-matrix, must be provided a 
priori, which states what skills are required for the solution of each item. This matrix is 
similar to the structure matrix that is specified in linear logistic test models (LLTM; 
Embretson & Daniel, 2008; Fischer, 1973). However, as LLTMs can be viewed as speci-
fications of unidimensional models, they are not truly multidimensional. Another advan-
tage of the MIRT model estimated in NOHARM is the option to perform exploratory 
analyses. The results of a MIRT analysis are similar to those of a factor analysis: A table 
of loadings of items on each dimension. NOHARM also calculates an index of goodness 
of fit (GFI). The Tanaka GFI (Tanaka, 1993) relates the sample covariance matrix and 
the residual covariance matrix. A GFI of 1 indicates perfect fit. GFI values of greater 
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than 0.90 are considered acceptable; values above 0.95 indicate good fit (McDonald, 
1999). 

Knowledge space theory 

In the HiSkA we assume that complex skills can be decomposed into subskills, and mas-
tery of the subskills is a condition for performing the complex skill. It follows that a 
person who solves a problem requiring complex skill c, which can be decomposed into 
the subskills a and b, should also be capable of solving problems requiring only skill a or 
skill b. Although such considerations were formative for constructing the HiSkA, its 
nodes are actually not skills but classes of items. A formal theory about such depend-
ences between test items, the knowledge space theory, was developed by Doignon and 
Falmagne (1999). The most fundamental concept in this theory is the knowledge state, 
which is defined as the subset of items (from a domain of items) a person can solve cor-
rectly in ideal conditions. Since not all possible knowledge states are plausible (e.g. 
states where difficult items are solved and easy items are failed), the authors assume 
knowledge structures, which are sets of plausible knowledge states. When a knowledge 
structure is closed under union, i.e. when the union of any two knowledge states of the 
structure is also an element of this structure, the knowledge structure is called a knowl-
edge space. Dependences between items (as described above) are called surmise rela-
tions, which are commonly represented as Hasse diagrams. Figure 2 shows this for a 
subset of items from the HiSkA. For example, when a person solves Item 34, it can be 
concluded on the basis of the surmise relations that she also solves Item 26 and Item 14 
(also meaning that {14, 26, 34} is a knowledge state in the corresponding knowledge 
space). Empirically, the knowledge state of a person corresponds with his or her response 
pattern for a set of items. It is important to note that the knowledge state can only be 
estimated as a theoretical construct, because empirically, item responses are subject to 
error.  
It is obvious that a completely different approach for modelling the relation between 
skills and performance is followed in the knowledge space theory than in (M)IRT. 
Whereas the latter assume functional relationships between latent traits and solution 
probabilities, the former makes qualitative assumptions (which are expressed in the lan-
guage of set theory) about the relations between items that are deterministic in nature.  
A number of methods have been developed within knowledge space theory that are par-
ticularly suitable for comparing the fit of data to polyhierarchical models. However, all 
these methods struggle with the problem of handling the probabilistic nature of error. A 
thorough discussion of these problems and a suggested solution is provided by Weber 
(2004). For our analyses we have applied the inductive item tree analysis as it is de-
scribed by Sargin and Uenlue (2009). 
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Figure 2:  

Hasse diagram of the surmise relations between seven items from the math test used in our 
studies. The numbers refer to nodes in the HiSkA; the corresponding problems are listed in 

Table 1 

Method 

The data reported here were collected in two studies. The first sample, referred to as 
Sample 1, was tested as part of a larger experiment with Merlin's Math Mill (Schoppek, 
subm.). Sample 2 was drawn from six third classes from Bayreuth and vicinity. Data 
from this sample have been collected exclusively for the present work and have not been 
reported elsewhere. 

Participants 

Sample 1 consisted of n=264 third graders – 128 girls and 136 boys – from seven ele-
mentary schools in the region of Bayreuth, Germany. The mean age of the participants 
was 9;1 (SD: 4.9). Sample 2 consisted of n=140 third graders – 71 girls and 69 boys – 
from three elementary schools in the region of Bayreuth. The mean age of these children 
was 8;9 (SD: 5.0). 

Measures 

To validate the hierarchy of arithmetic skills, we developed a test made up from items 
that could be mapped to the nodes of the hierarchy. As there are more nodes in the hier-
archy than the number of items that can be administered in a test for children of age 8, a 
subset of nodes had to be selected for the test. We decided to exclude nodes from the first 
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three levels, because the corresponding problems would be too easy. We also excluded 
multiplication and division computation problems, because in earlier studies performance 
on these problems depended markedly on how recently the multiplication tables have 
been practised (Schoppek & Laue, 2005). We selected 17 addition and subtraction com-
putation problems with two or three operands and the unknown at different positions. 
The test also included six (seven) word problems, ranging from a compare word problem 
to a complex word problem requiring three calculation steps, including multiplication. 
The application of methods based on the knowledge space theory requires that the num-
ber of subjects is greater than the number of possible response patterns. Thus with our 
samples of n ≥ 140 we can analyse a subset of seven items (27=128). We selected seven 
Items that are particularly representative for the underlying structure of skills (see Figure 
2). The items are listed in Table 1. 

 
Table 1:  

Problems of the reduced HiSkA tests 

Node 
number 

Problem Mean 
2006 

Mean 
2008 

Skills 

Node 14 ___ + 8 = 11 .97 .96 decomp, subtra, ctb 
Node 26 54 – ___ = 41 .86 .91 decomp, positions, reverse, subtra3 
Node 30 14 + 3 – 16 = ___ .87 .74 intermed, combine or reverse 
Node 51 93 – 62 – ___ = 17 .44 .34 intermed, reverse2, ctb, combine  
Node 34 “There are 25 children in a class. 

All children shall present their 
favourite book. 4 boys and 5 girls 
haven’t read a book yet. How 
many books will then be pre-
sented?” 

.41 .844 complex WP, 2 steps, AddSub 

Node 38 “Sabrina is building ducks with 
Lego. She needs 9 bricks per 
duck. How many ducks can she 
build when she has 63 suitable 
bricks?” 

.53 .49 MulDiv WP 

Node 50 “The Circus Pellegrini needs 60 
fishes everyday to feed the ani-
mals. Each of the 4 ice bears eats 
8 fishes. The remaining fishes are 
given to the 7 seals. How many 
fishes does each seal get?” 

.23 .24 complex WP, 3 steps, AddSub, 
MulDiv 

                                                                                                                         
4 There is a marked difference in difficulty between 2006 and 2008 because two different problems were 
selected as instances for Node 34. The text displayed in Table 2 is from the 2008 test. In 2006 the prob-
lem involved adding times on a bike tour. 
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The structure depicted in Figure 2 combines three strands of skills. The strand from Node 
14 up to Node 50 requires more and more sophisticated addition and subtraction skills. 
Those skills are also required in the strand from Node 14 to Node 51; but this strand addi-
tionally requires handling three operands. The third strand from Node 38 to Node 50 in-
volves multiplication. Thus, besides much dependence between the nodes, there are also 
regions in the structure that are expected to be quite independent: Node 38 should be inde-
pendent from Nodes 14, 26, 30, 34 and 51. Also, the greater the distance of the successors 
of Node 14 from the root, the more independent they should be (e.g. Nodes 34 and 51). 

Procedure 

Data from Sample 1 were collected in March 2007 as a follow-up test in a training ex-
periment with MMM. The experiment had started with a pretest in October 2006, fol-
lowed by a eight week intervention with MMM (or regular math instruction in the con-
trol classes), and a posttest in December 2006. The test was administered with a time 
limit of 45 minutes, which is sufficient for solving all 23 problems. Each correctly an-
swered equation problem scored one point. For word problems, one point was scored 
only if the calculation, the correct result, and the unit stated in the answer were correct. 
Data from Sample 2 were collected in October 2008, about four weeks after the begin-
ning of the school year. Time and scoring scheme were the same as in Sample 1. At the 
end of both studies, teachers were handed out the results of the tests and were told to 
debrief the pupils. 

Data analysis 

As mentioned above, we analysed our data with a broad range of methods in order to com-
pare results. At this point, we will give an overview of the methods we have applied. Some 
more details are provided in the appropriate sections. In a first step, we applied traditional 
methods based on classical test theory: internal consistency (Cronbach’s alpha) and factor 
analysis. We continued with testing our data for RM conformity, applying Andersen’s LR 
test and the Martin-Löf test. To test the multidimensional structure of the data directly, we 
conducted multidimensional IRT analyses and analyses based on the knowledge space 
theory. Finally, we simulated data sets on the basis of three competing models and com-
pared the results of some of the methods that we had applied to the empirical data. 

Results 

Methods based on classical test theory 

The most common and traditional methods for testing item homogeneity are the analysis 
of internal consistency (e.g. Cronbach’s α) and factor analysis. Both are associated with 
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classical test theory (Lord & Novick, 1968). Because factor analysis may create spurious 
factors when applied to Pearson correlations of dichotomous data (Kubinger, 2003), we 
based our analyses on tetrachoric correlation matrices. The analyses were conducted 
using the R-package “psych” (Revelle, in prep.). 

Reliability analysis 
The analysis of the complete tests resulted in satisfactory internal consistencies of α = .84 
(2006) and α = .81 (2008). For a test of 23 items, this is not particularly high and leaves 
room for the interpretation that despite one main ability factor, there are other factors 
influencing the responses. This becomes even more obvious when analysing the reduced 
test consisting of seven items, resulting in consistencies of α = .56 (2006) and α = .47 
(2008). Of course, these results are not conclusive as to whether they are due to meas-
urement error or to a multidimensional generating structure. 

Factor analysis 
The results of principal component analyses parallel those of the reliability analyses. For 
the complete tests we found one main factor with a sharp bend in the scree-plot of eigen-
values (e) (2006: e1 = 8.73, e2 = 2.61; 2008: e1 = 8.12, e2 = 2.76). However, this factor 
accounts for only 38 % (2006) and 34 % (2008) of variance. Again paralleling the results 
of the reliability analyses, the dominance of a main factor is less obvious in factor analy-
ses of the reduced tests. Because we present results of a MIRT version of factor analysis 
in more detail below, we don’t want to elaborate further on traditional methods. 
To summarise, traditional methods converge in the interpretation that a substantial share 
of variance can be explained by a fairly general ability factor. This does not preclude the 
existence of other specific factors and is thus in line with the assumptions of the HiSkA.  

Rasch model analyses 

One advantage of methods based on item response theory (IRT) is that many of them 
were developed specifically for dichotomous data. Probably the most fundamental of all 
IRT models – the Rasch model – has the additional advantage of allowing real tests of 
the predictions of the model and not merely goodness-of-fit tests (Kubinger, 2007). 
We conducted Rasch analyses using the R software system with the eRm package (Mair 
& Hatzinger, 2007). Specifically, we used two common likelihood-ratio (LR) tests to 
estimate the consistency of our data with the unidimensional Rasch model: Andersen’s 
LR test (Andersen, 1973), which evaluates the differences between the CML estimates of 
the item parameters in different subgroups, and the Martin-Löf test, which assesses item 
homogeneity by comparing the likelihoods of two subsets of items with the likelihood of 
the complete test. For Andersen’s LR test we formed the subgroups by a median split of 
the total scores; for the Martin-Löf test we separated the word problems from the compu-
tation problems.  
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For the complete test data from 2006, Andersen’s LR test indicates a deviation from the 
Rasch model (LR = 38.14, df = 22, p < .05). The Martin-Löf test, however, indicates no 
significant deviation from item homogeneity (LR = 67.93, df = 101, p > .05). For the 
complete test data from 2008 none of the LR tests suggests rejection of the H0 (RM con-
formity) (Andersen’s LR = 29.20, df = 23, p = .17, Martin-Löf LR = 100.86, df = 118, p > 
.05). 
We conducted the same analyses with the reduced tests. For the 2006 data not all items 
could be used in Andersen’s LR test when splitting at the median because the easiest 
item was answered correctly by all participants of the group with raw scores above the 
median. The remaining six items indicate no significant deviation from person homoge-
neity (Andersen’s LR = 8.04, df = 5, p = .154) and item homogeneity (Martin-Löf LR = 
5.21, df = 11, p > .05). Similar results were found for the 2008 data, where also one item 
was dropped from the analysis when splitting at the median, resulting in a likelihood 
ratio that indicates no deviation from the RM (LR = 3.778, df = 5, p = .582). All items 
could be used for the Martin-Löf test, which also indicated no significant deviation (Mar-
tin-Löf LR = 12.62, df = 11, p > .05). 
The overall picture can be interpreted as evidence for the RM conformity of all tests – 
the full tests as well as the reduced tests. Given the assumed multidimensional generating 
structure these results are astonishing. However, they are in line with earlier findings of 
our group where similar tests consisting of different types of problems proved to conform 
to the RM (Schoppek & Tulis, 2010). But failure to reject the H0 does not mean its con-
firmation. Hence these results again leave space for the assumption of additional factors.  

Analyses based on multidimensional IRT (MIRT) 

The methods applied hitherto are commonly used to demonstrate unidimensionality. But 
are the results of these tests sufficient to reject our assumption of the HiSkA as generat-
ing structure? We tried to answer this question by testing the assumed multidimensional 
structure of our data in a confirmatory manner using the NOHARM software (Fraser & 
McDonald, 2003), which performs parameter estimations for compensatory MIRT mod-
els. 
We calculated a series of analyses varying the number of extracted dimensions and com-
pared the Tanaka GFI values. Exploratory analyses produced results that could be easily 
interpreted for the data from 2008. In a next step, we performed the same confirmatory 
analyses on both data sets. Starting from the seven items introduced earlier, we added 
some more items from the complete tests that resemble the seven items in their require-
ments, ending up with 12 and 13 items for 2006 and 2008, respectively. In the confirma-
tory analyses, we assumed one “general skill” dimension (g) for the solution of all items, 
a “multiplication/division” dimension (“MulDiv”), and a third dimension representing 
skills of dealing with more than two operands (“Chains”). The assumption of a “general 
skill” dimension is justified on the basis of the results reported above that indicate homo-
geneity of our items. 
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The results of the MIRT analyses are displayed in Table 2. In the “Comments” column 
we list the interpreted names of the factors for exploratory analyses; for confirmatory 
analyses we also list the name of the factors, but also the number of factor loadings 
greater than 0.4 (after varimax rotation), and in parentheses the number of items that 
were expected to load on the factor. We could not find traces of the skill “crossing the 
tens boundary” and of problem size in our data. 
The Tanaka goodness-of-fit index indicates that all models displayed in Table 2 fit the 
data well. It is not surprising that in the exploratory analyses more factors result in a 
better fit. In both data sets, the assumed factors “g” and “MulDiv” appear in most analy-
ses. This is not the case for the factor “Chains” (representing the skill of handling more 
than two operands). Clear indications for this factor are only found in the confirmatory 
analysis with three factors of the 2008 data. Our interpretation is that handling more than 
two operands is not a central skill, probably because there are so many strategies support-
ing the skill.  
The results of the MIRT analyses connect well to those of the unidimensional analyses: 
Again we find a strong main factor explaining much of the variation in the data. As the 
plain addition/subtraction problems have the highest loadings on this factor (and most 
problems in the analysed set require these operations), it seems to represent the corre- 
 

Table 2:  
Results of the MIRT analyses of 13 (12) items using NOHARM. In the Comments column, 

the numbers of loadings > .4 are listed; theoretically expected numbers are given in 
parentheses 

Model Description Tanaka 
GFI 

RMS of 
residuals

Comments 

2008    

4 factors exploratory 0.991 0.005 "g", MulDiv, 2 item specific 
factors 

3 factors exploratory 0.985 0.007 plain AddSub, MulDiv, 1 item 
specific factor 

2 factors exploratory 0.977 0.008 plain AddSub, MulDiv 

3 factors: g, MulDiv, 
Chains 

0.971 0.009 g: 7 (13), MulDiv: 3 (4), Chains: 3 
(3) 

1 factor  0.958 0.011 g: 6 (13) 

2006    

3 factors: g, MulDiv, 
Chains 

0.990 0.003 g: 10 (12), MulDiv: 2 (3), Chains: 
1 (3) 

1 factor 0.986 0.008 g: 9 (12) 
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sponding skill. The requirement to detect and perform multiplication and division in 
word problems shows up reliably as a second factor. However, not all subtleties of the 
HiSkA, such as the skill for crossing the tens boundary, are reflected in the data. 

Analyses based on knowledge space theory 

The knowledge space theory defines a knowledge state of a person as the particular sub-
set of questions that this person is capable of solving (Falmagne, 1989). This means that 
a subjects’ pattern of responses to a set of items corresponds to his/her knowledge state. 
Of course, it is plausible to assume certain probabilities of errors that blur the correct 
states. The selected seven items with the surmise relations shown in the Hasse diagram of 
Figure 2 form a knowledge space of 23 states. We refer to response patterns that are 
elements of this knowledge space as “regular patterns”. 

Distribution of response patterns 
The 264 cases from 2006 produced 45 different response patterns (out of 128 possible 
patterns). Their distribution is depicted in Figure 3. Two hundred and six (78 %) of the 
response patterns equalled regular knowledge states. Most of the non-regular patterns 
occurred only once or twice. The most frequent non-regular pattern occurred seven 
times. Only three of the 23 regular patterns did not occur at all. 
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Figure 3: 

Distribution of response patterns from 2006. The dark columns represent regular response 
patterns 
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We can compare these results with the linear structure that results from a unidimensional 
model, assuming that the solution of an item implies the solution of all easier items (so 
the items would form a Guttman scale). The corresponding knowledge space for our 
seven items then consists of eight knowledge states (0000000, 1000000, 1100000, …, 
1111111). Only 128 of the 264 (48 %) response patterns were regular patterns of this 
linear model. 
From this comparison we might conclude, that the HiSkA model is more appropriate than 
the linear model. But these analyses suffer from the problem that the knowledge space of 
the linear model is a subset of the knowledge space of the HiSkA: All regular patterns of 
the unidimensional model are also regular patterns of the multidimensional model, and 
there are more regular patterns in the latter model. Therefore, the probability of occur-
rence of an irregular pattern is greater for the unidimensional model.  
The data from 2008 yield similar results. The 140 cases produced 34 different response 
patterns. Seventy-nine per cent of the response patterns were regular knowledge states of 
the HiSkA. The most frequent non-regular pattern occurred only three times. The unidi-
mensional model with its eight knowledge states covers only 51 per cent of the response 
patterns.  
To summarize, these analyses show that there is a broad overlap between the empirical 
response patterns and those expected in the knowledge space derived from the HiSkA. 
As the linear model has fewer knowledge states, the comparison of the two models with 
respect to overlap is unfair.  

Item tree analysis  
In knowledge space theory, the surmise relation states for pairs of items (i, j) from an 
item set I that mastering item j implies mastering item i. These implications form a quasi-
order on I. The empirical cases that contradict the quasi-order can be represented in a 
matrix of the numbers of counterexamples. This matrix is the starting-point of item tree 
analyses. Schrepp (2003) introduced an algorithm that allows to extract inductively a set 
of competing quasi-orders from data. He also proposed a measure diff as the mean quad-
ratic difference between the observed counterexamples to j→i and the expected number 
of counterexamples for each quasi-order. The best fitting quasi order is the one with the 
minimal diff value. Sargin and Uenlue (2008) proposed some corrections and improve-
ments to Schrepp's ideas that are implemented in the R package DAKS (Sargin & 
Uenlue, 2009).  
In the following analyses, we compared three knowledge structures, using the minimized 
corrected algorithm from the DAKS package: (a) the structure induced by the inductive 
item tree analysis, (b) the structure derived from the HiSkA, and (c) the linear structure, 
which assumes that solution of an item implies the solution of all easier items. The re-
sults are shown in Table 3. For both data sets, the HiSkA structure fits the data better 
than the linear structure. In the 2008 data, the fit for this structure is as good as the in-
duced structure. 
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Table 3:  
diff values from item tree analyses 

 Induced structure HiSkA structure Linear structure 

2006 61.32 87.31 194.37 

2008 10.03 9.97 35.89 
 
 
Although the induced structures are theoretically unproductive (they contain surmise 
relations between the most difficult items and most items of medium difficulty, and no 
strands of surmise relations spanning more than 3 items), they serve as a lower bound 
estimation of the diff values for the present data. Again, these results clearly favour the 
HiSkA structure over the linear structure. Moreover, for the 2008 data the diff value 
indicates that the HiSkA structure fits the data even better than the induced structure. 

Simulations 

In the previous sections, we have assumed tacitly that the HiSkA as a polyhierarchic 
structure should generate multidimensional data. Now we want to discuss this assump-
tion more closely. We have already mentioned the conclusion of Reckase and Stout 
(1995) that multidimensional structures produce unidimensional data when the items 
are sensitive to the same composite of skills. We want to postpone the discussion if 
this is plausible in our case. Rather, we want to explore if the HiSkA might generate 
unidimensional data on account of its very properties. After all, the HiSkA predicts (a) 
different difficulties for classes of problems and (b) positive correlations between 
many of the pairs of items. Qualitatively, this can be illustrated with the expected 
relationship between Node 34 and Node 51 (see Figure 2). Although both nodes have 
Node 14 as an ancestor, we would not expect a high correlation in the solution rates, 
because beside the skills for Node 14, they require completely different skills (Node 
51: Handling more than two operators with varying placeholders; Node 34: transform-
ing text into a mathematical model). On the other hand, both nodes represent moder-
ately advanced problems, which beginners aren't expected to solve. Node 38 is the 
only one that is largely independent of the other nodes. But again it represents a rather 
advanced problem type. 
It is impossible to predict exactly the results we can expect when analysing data gener-
ated by the HiSkA. Even with only seven nodes the structure is too complex. This ques-
tion can better be answered with simulations. When the domain is complex, simulations 
sometimes yield surprising results. In our case, it might be that despite the polyhierarchic 
structure of the HiSkA, it generates data that can well be explained by a single dimen-
sion. 
We simulated data sets using the knowledge space theory. It is straightforward to specify 
all knowledge states that are consistent with a specific model – the so called regular 
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patterns. Furthermore, the distribution of the knowledge states has to be determined a 
priori. In some simulations we based the distribution of the knowledge states on the 
empirical distribution; in others we assumed uniform distribution of the knowledge 
states. 
We simulated data according to three models: (1) The HiSkA model with the empirical 
distribution of knowledge states (emp model), (2) the HiSkA model with a uniform dis-
tribution of knowledge states (unif model), and (3) a linear model assuming that the 
items conform to a Guttman scale (see above). All simulated data sets were created in 
two steps. First we drew cases from the set of regular patterns with probabilities that 
were derived from the aforementioned distributions. In a second step each entry of the 
response pattern was randomly switched according to two parameters: The probability 
for guessing, pg, and the probability for a slip, ps. The guessing parameter was set to pg = 
0.05, because results for our problems can be selected from a plausible range of about 20 
numbers. The slip parameter was set to ps = 0.1. Preliminary analyses have shown that 
these settings produced distributions of response patterns that were similar to those in the 
empirical sample. 
To see what relationships between items can be expected, we simulated two samples of n 
= 10000 cases each, one based on the empirical distribution, and one based on the uni-
form distribution of knowledge states. The phi-coefficients between pairs of items in the 
dataset from 2008 (columns r) and the two simulated samples (columns e for emp model, 
u for unif model) are depicted in Table 4. Correlations between .10 and .19 are marked in 
light grey; correlations greater than .19 are dark grey (Note that the maximum possible 
phi-coefficient is less than 1.0 for many of the marginal distributions in these samples). It 
is very interesting that despite the relative independence of Node 38 the simulations not 
only predict a strong correlation with Node 50, which is also present in the empirical 
data, but also correlations with the nodes 34, 30, and 51. Overall, the HiSkA predicts 
correlations between unrelated items – predominantly, but not only when using the em-
pirical distribution. 
 

Table 4:  
Correlations (phi) between items in the empirical sample from 2008  (r) and two simulated 

samples (e – emp model, u – unif model). █: .10≤ phi<.20, █: .20≤ phi 
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The next question we want to answer by means of simulation is how well the item tree 
analysis reproduces the generating structure. In the previous chapter, we have reported 
diff values for the discrepancy between the observed and expected numbers of instances 
(pairs of items) contradicting the assumed structure. One problem with the diff values is 
that their distribution is not known, preventing significance testing. To circumvent this, 
one can use a bootstrapping method: We simulated n = 1000 datasets (of n = 140 cases 
each) generated by the HiSkA as described above, and calculated the corresponding diff 
values. The empirical diff value can then be compared with the distribution. We did this 
with the empirical distributions of response patterns of both datasets. Both resulting diff-
distributions resemble a χ2-distribution with a median of 54 and an interquartile range of 
20 for 2006, and a median of 9 and an interquartile range of 5 for 2008. 
For 2006 we found that only 2.2 % of the simulated diff values were greater than the 
empirical value of diff = 87.31, indicating a significant deviation of the empirical value 
from what is expected assuming validity of the HiSkA. However, all simulated diff-
values were less than diff = 194.37, the value resulting from the assumption of a Guttman 
model. For 2008, the location of the empirical diff value indicated a good fit of the 
HiSkA: 40.6 % of the simulated diff values were greater than the empirical value of diff = 
9.97. This pattern of results is in line with the findings from the MIRT analyses, that the 
data from 2008 are more consistent with the HiSkA than the data from 2006. 
Now we turn to the central question if the HiSkA can generate unidimensional data. For 
each of the three models (emp, unif, linear) we simulated 1000 samples of n = 240 and 
noted rejection of the H0 of RM conformity assessed with the Martin-Löf test and Ander-
sen’s LR test. For the Martin-Löf test we divided the items in computation problems and 
word problems. For all tests, the common significance level of p < .05 was applied. 
We expected more deviations from the Rasch model for the uniform data sets because 
they contain more response patterns that contradict the unidimensional model (recall that 
these patterns were rare in the empirical distribution). As a matter of course, we pre-
dicted more deviations from the Rasch model for the multidimensional data sets than for 
the unidimensional sets. Results of the simulations are shown in Table 5. The most obvi-
ous result is that we obtained completely different results depending on the split crite-
rion. When we split the samples randomly for the LR test, rejection rates are very low.  
 

Table 5: 
Martin-Löf-test and Andersen’s LR-test for simulated data (for each model, N=1000 samples 

of n=240 cases were simulated). 

 Rejection rates 
 Martin-Löf test LR test median split LR test random split 
Guttmann model 
(unif.dist.) 

0.954 0.980 0.068 

HiSkA model (emp. dist.) 0.775 0.573 0.057 
HiSkA model (unif. dist.) 0.988 0.528 0.057 
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For stricter split criteria rejection rates are much higher. Our expectations for the HiSkA-
models are approximately met by the results of the Martin-Löf test: The uniform model is 
almost always rejected, whereas the empirical model passes the test in about 23 % of the 
cases. The rejection rate of Andersen's LR test does not differ much between the HiSkA-
models based on different distributions and is less sensitive to deviations from the RM. 
Unexpectedly, the Guttman model is also rejected in most cases when applying strict 
split criteria. According to Kubinger (2005, 2007) this is typical for Guttman scales for 
the following reason: In the subsample scoring above the median, almost everyone solves 
the easy items, leading to erroneous parameter estimations for these items. In the sub-
sample scoring below the median, this happens with the difficult items because almost 
nobody in that subsample solves them. Thus, deviations between accurately and errone-
ously estimated parameters on either end of the scale are likely, leading to high LRs and 
rejection of the RM. We think that similar effects are responsible for the high rejection 
rates of the HiSkA models. Nevertheless, our simulations show that even with these 
effects in place, between 23 % and 43 % of the simulated samples in the “empirical dis-
tribution” condition have been classified as consistent with the RM. It is not implausible 
that our empirical data were similar to those samples. So we can answer our central ques-
tion that in most cases, a multidimensional structure like the HiSkA does not generate 
data conforming to the RM, but that the probability of obtaining results that would be 
interpreted as indicating RM conformity is not negligible, particularly when using An-
dersen's LR test. 
A possible explanation for the moderate rejection rates reported in Table 5 is that Ander-
sen's LR test does not have enough power with sample sizes around 200. To investigate 
this we performed simulations varying sample size. Thousand samples were simulated 
for each sample size ranging from n = 100 to n = 1000 with increments of 50. Split crite-
rion was the median of the raw scores. The results are displayed in Figure 4. We found 
that for all models the rejection rate approaches an asymptote of greater than 0.95. This 
indicates that our empirical sample sizes of n = 264 and n = 140 were not large enough to 
reject the H0 of being consistent with the RM. The slope differences between the three 
models are due to the effects discussed above for Guttman scaled data. The knowledge 
space that conforms to the HiSkA deviates from that conforming to the Guttman model 
in important aspects. Please refer to Figure 2 for the following explanations. Considering 
Item 51 and Item 26, the HiSkA allows all four combinations of solving vs. not solving 
these items, although Item 51 is much more difficult than Item 26. The same is true for 
Item 50 and Item 30. This independence between items results in more accurate parame-
ter estimation and hence to a lower probability of H0 rejection in the LR test. In the em-
pirical distribution, the combinations of Item 51 solved and Item 26 failed or Item 50 
solved and Item 30 failed are rare, making the situation more similar to the Guttman 
model than the uniform HiSkA model, where these combinations occur with the same 
frequency as any other regular combination. 
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Figure 4:  

Rejection rates (C) of Andersen’s LR test applied to simulated data of varying sample size 
(unif: HiSkA model with uniform distribution of knowledge states; emp: HiSkA model with 

empirical distribution; linear: Guttman scaled data) 

 
To summarise, the simulations have shown that (a) the HiSkA predicts correlations be-
tween item classes where at first glance one would expect none, that (b) the bootstrap 
method for simulating distributions of diff values demonstrated that the 2008 data fit the 
HiSkA well, and that (c) the HiSkA generates data that are not unlikely to be classified 
as being consistent with the RM when using sample sizes around n = 200. 

Discussion 

What do all these analyses contribute to the question whether a multidimensional gener-
ating structure can produce data conforming to the RM and to the question of the validity 
of the HiSkA? In our context of extensive model testing it should not be forgotten that 
there is no strictly objective procedure that tells if a data set conforms to a specific model 
or not. Eventually the researchers are responsible for a decision. Also, a data set may 
match more than one model and it depends on the researchers' goals what model is pre-
ferred. A second caveat pertinent to our interpretations concerns the sizes of the empiri-
cal samples. To arrive at sound conclusions about the structure of arithmetic skills, the 
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results need to be replicated with larger samples. For some of the analyses reported, our 
sample sizes were very small. 
Our simulations have demonstrated that a multidimensional structure like the HiSkA 
produces data that are not unlikely to be qualified as consistent with the RM when apply-
ing common criteria to sample sizes around n = 200. However, this does not preclude 
that multidimensional models might fit the data as well. Firstly, Andersen’s LR test does 
not have much power at these sample sizes5 and secondly, the “confirmation” of the H0 
(unidimensionality) with the type-I-error set to p < 0.05 is associated with a large type-II-
error. Compared to Andersen's LR test, the Martin-Löf test was more sensitive to devia-
tions of our simulated data from the RM, resulting in many cases where one test indi-
cated person homogeneity and the other test rejected item homogeneity in the same simu-
lated data set. This is not unusual: The same pattern of results has been found in human 
data from solving word problems by Arendasy et al. (2005), who applied Ponocny's 
(2001) non-parametric T statistics rather than the traditional likelihood ratio tests. Pre-
liminary analyses of our empirical data with Ponocny's (2001) T2-statistic have shown 
that multiplication/division vs. addition/subtraction as partitioning criterion suggested 
rejection of the H0 of item homogeneity whereas random partitioning did not. 
So regarding the question if whether multidimensional generating structure can produce 
unidimensional data we can conclude that depending on the methods used, deviations 
from homogeneity may or may not be detected. Global tests such as Andersen's LR test 
with median split may be appropriate in the context of test development. However, when 
the focus is on validating cognitive models, more specific tests such as the Martin-Löf 
test with theoretically grounded partitioning criteria, or Ponocny's (2001) T-statistics 
provide better chances of detecting deviations.  
A final remark about our simulation results: They contradict findings of an early simula-
tion study by Stelzl (1979), who found likelihood tests to be seriously insensitive to 
specific violations of homogeneity even with sample sizes of n = 1000. We attribute this 
discrepancy to the fact that our simulated samples were more realistic than some of the 
scenarios simulated by Stelzl (1979), because they were carefully derived from plausible 
knowledge spaces. 
The discussion of the second question – for the validity of the HiSkA – is structured 
along four possible interpretations of our results:  
a) One main factor accounts for a substantial amount of variance; the rest is error vari-

ance. 
b) The test draws on multiple skills some of which are highly correlated with each other. 
c) The data conform well to the HiSkA, but the HiSkA is not as multidimensional as 

expected. 
d) The data are multidimensional, but the generating structure is different from the 

HiSkA.  

                                                                                                                         
5 For recent developments of RM tests with predictable power see Kubinger, Rasch & Yanagida (2009). 
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For each interpretation we will check how well it is supported by the various analyses. 
Interpretation a gets some support from the results of the factor analyses and the reliabil-
ity analyses. If our goal was to develop a homogeneous arithmetic test, our items would 
constitute a good basis from which this goal could be attained by item selection and item 
reformulation. But even these analyses indicate that a one factor solution is unsatisfac-
tory. Particularly the subset of seven items does not form a homogeneous scale. The 
MIRT analyses clearly contradict Interpretation a, because in the sample of 2008 two 
additional factors could be confirmed: One representing multiplication/division skills, 
and one representing the skill of handling more than two operators. In the sample of 2006 
only the former factor could be confirmed. Hence, variance not explained by the first 
factor can be explained by specific other skills. The item tree analyses yielded worse fits 
for the unidimensional models than for the HiSkA models, which speaks against Hy-
pothesis a. But as the knowledge space derived from the Guttman model has much fewer 
states than the one derived from the HiSkA, the linear models were clearly disadvantaged 
in the item tree analysis. Mirroring the observation that data conforming to a Guttman 
model cannot conform to the RM (Kubinger, 2007), our assumptions for modelling a 
linear structure might be too restrictive for item tree analyses as well. 
At first glance, the MIRT results militate against Interpretation b, because the solutions with 
two or three independent factors fit the data better than one-factor solutions. However, it is 
not clear what exactly is represented by the first factor. Some indicators point to the possi-
bility that the strong first factor found in most analyses (FA, MIRT) is a compound of skills: 
Firstly, we found correlations between items that should be unrelated according to the 
HiSkA, for example between items from Node 34 and Node 38. (However, the fact that the 
simulations also predicted unexpected correlations attenuates this argument). Secondly, 
there are reasons why theoretically independent skills might be anyway correlated. Let us 
illustrate this with the following example. Although in principle the skill of handling more 
than two operators in a computation problem (Node 51) has nothing to do with the skill of 
identifying the requirement of performing a division in a word problem (Node 50), it is 
likely that a person who masters one skill has some experience in the other skill, too, just 
because both are subject of mathematics instruction at about the same time and the person 
has reached a certain level of development. In the sample of 2008, items loading high on the 
first factor require various levels of addition and subtraction skills. In the sample of 2006 
more diverse items have loadings on the first factor and only one additional factor (mul/div) 
could be identified. For this sample, Interpretation b (correlated skills) is probably adequate. 
All these considerations are leading to the question, whether general intelligence (g) might 
establish the first factor. Our interpretation of the first factors in the MIRT analyses as re-
flecting the level of development fits well into the conception of van der Maas, Dolan, 
Grasmann, Wicherts, Huizenga, and Raijmakers (2006). These authors have demonstrated 
that g can be reconstructed as emerging by positive beneficial interactions between cogni-
tive processes during development. 
Interpretation c can be viewed as a variation of Interpretation b – at least they are not 
mutually exclusive. The HiSkA as a directed acyclic graph is not per se multidimensional 
in the sense of orthogonal dimensions defining a space. It only opens the possibility of 
independent development on different branches, which does not necessarily occur in 
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reality. For 2008, all relevant analyses (MIRT, ITA, simulations) indicate that in spite of 
the existence of a strong first factor, the data conform well to the HiSkA. Hence for this 
data set we favour Interpretation c as the best explanation: The data conform well to the 
HiSkA, but the HiSkA is not as multidimensional as expected. This is not so obvious for 
2006. But taking into account that the data in this sample has been collected later in the 
school year, it could well be that theoretically independent skills have assimilated 
through the unifying influence of training and instruction. Baumert et al. (2007) have 
pointed out that when the treatment is constant (curricula, similar instruction for all stu-
dents), differences in academic performance necessarily vary with general cognitive 
abilities (prior knowledge, faster comprehension, etc.). This would explain why the 2006 
data are closer to unidimensionality. 
Finally, turning to Interpretation d (that the data are multidimensional, but based on a 
different generating structure), only the inductive item tree analysis of the 2006 data 
points to that. However, the induced structure can hardly be called multidimensional, 
because it has Nodes 30, 38, 50, and 51 at the upper level, Nodes 26 and 34 at the inter-
mediate level, and Node 14 as a root node, with the levels almost completely linked. 
Although the analyses converge to Interpretation c, we should keep in mind that many of 
them are restricted to a subset of 7 items. This limitation is due to the fact that our mod-
erate sample sizes did not allow item tree analyses of larger item sets. So we could pro-
vide some arguments for the validity of the HiSkA, but did not validate it as a whole. As 
the HiSkA was developed for application in training software, it needed to be very com-
prehensive, so a complete validation is probably neither feasible nor desirable. 
Regardless of the size of the item set, some lessons about the structure of elementary arith-
metic skills have been learned: Firstly, prerequisite relations between computation problems 
and word problems as well as among word problems postulated in the HiSkA have been 
confirmed on a fine grained level. These analyses complement analogous coarse grained 
results obtained by Fuchs et al. (2006). Secondly, identifying and performing multiplication 
in word problems has been identified as a relatively independent skill. This finding is inter-
esting in a research culture where most authors focus either on addition/subtraction or on 
multiplication/division, but rarely on arithmetic in its entirety. Thirdly, we found indications 
that handling more than two operators is another independent skill. Because handling more 
than two operators involves subskills that are relevant to algebra (e.g. the reversal of opera-
tors), we believe that practising this problem type is a good way for preparing young stu-
dents for this important area of mathematics. Many authors agree that “an algebraic strand 
should be integrated with arithmetic from the earliest years” (Freiman and Lee, 2004 cited 
after Verschaffel, Greer, & Torbeyns, 2006). 
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Appendix 

Level 1 
New: Subskill decomp Decomposition of numbers between 1 and 10 
  Special case Decompositions of 10 
  Additional skill  Understand that 2 + 5 = 5 + 2 
 
Level 2 
New: Subskill igno Ignore the tens position (when adding up to 20 without CT)  
 11 + 8 = _ 
New: Subskill subtra: Subtraction / completion (based on decomp) 
 9 – 4 = _ , 4 + _ = 9 
 
Level 3 
New: Subskill subtra3 Application of decomposition on subtraction with PH 3 
 8 – _ = 5 
New: Subskill ctb Crossing the tens boundary (based on decomp) (addition, PH 5) 
 7 + 6 = _ 
 
Level 4 
New: Subskill reverse Reversal of operators (subtraction, PH 1) 
 _ – 5 = 3  ⇒ 3 + 5 = _ 
New: Subskill positions Calculate with two digit numbers (without CT) 
 22 + 17 = _ , 48 – 25 = _  
New: Combination decomp & subtra & ctb  
 (NR 20 with CT, subtraction: PH 3 und 5,   
 addition: PH 1 and PH 3) 
 15 – 8 = _ , 15 – _ = , 8 + _ = 12 , _ + 3 = 11 
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Level 5 
New: Subskill intermed Memorise intermediate results in problems with 3 operands  
 (L7, NR20, PH 7) 
 7 + 5 + 3 = _ 
New: Subskill combine Combine arbitrary terms in problems with 3 operands  
 (didactically simplified: two terms cancel each other out) 
 8 + 11 – 8 = _ 
New: Combination decomp & ctb & reverse  
 (subtraction NR20, PH1) 
 _ – 7 = 4 
New: Combination decomp & ctb & positions  
 (NR100, CT, PH5) 
 36 + 27 = _ 
 23 – 17 = _ 
 
Level 6 
New: Combination decomp & positions & reverse (& subtra3) 
 (NR100, no CT, PH 1 and PH 3) 
 _ + 17 = 29 , 56 – _ = 21 
New: Combination  intermed & combine  
 (L7, NR20, PH 7) 
 17 – 11 + 3 = _ 
 
Level 7 
New: Combination decomp & positions & reverse & ctb (& subtra3) 
 (NR100, CT, PH 1 und 3) 
 36 + _ = 81 , _ – 37 = 26 
New: Combination intermed & combine & reverse 
 (L7, NR20, PH 5, without CT) 
 8 – 6 + _ = 18 
 
Level 8 
New: Subskill reverse2 gradual backward-calculation in problems with L7, PH1 
 _ – 3 – 5 = 8 
Enlargement All types of addition/subtraction problems in NR1000 
Enlargement intermed & combine & reverse & ctb  
 (L7, NR20, CT, PH 3)  
 14 – _ – 3 = 6 
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Level 9 
New: Combination combine & reverse2 & reverse & ctb 
 (L7, NR20, PH3) 
 18 – _ + 3 = 12 
Enlargement reverse2 with mixed operators  
 (L7, PH 1) 
 _ – 6 + 14 = 18 
 
Level 10 
Enlargement All problems L7 im NR100 
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