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Abstract 
The linear logistic test model (LLTM; Fischer, 1973) has been applied to a wide variety of new 

tests. When the LLTM application involves item complexity variables that are both theoretically inter-
esting and empirically supported, several advantages can result. These advantages include elaborating 
construct validity at the item level, defining variables for test design, predicting parameters of new 
items, item banking by sources of complexity and providing a basis for item design and item genera-
tion. However, despite the many advantages of applying LLTM to test items, it has been applied less 
often to understand the sources of complexity for large-scale operational test items. Instead, previously 
calibrated item parameters are modeled using regression techniques because raw item response data 
often cannot be made available. In the current study, both LLTM and regression modeling are applied 
to mathematical problem solving items from a widely used test. The findings from the two methods are 
compared and contrasted for their implications for continued development of ability and achievement 
tests based on mathematical problem solving items.   
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Since its introduction in 1973, the linear logistic test model (LLTM; Fischer, 1973) has 
been applied widely to understand sources of item complexity in research on new measures 
(e.g., Embretson, 1999; Gorin, 2005; Hornke & Habon, 1986; Janssen, Schepers, & Peres, 
2004; Spada & McGaw, 1985). These applications require not only estimation of LLTM 
parameters on item response data, but a system of variables that represent theoretically inter-
esting sources of item complexity. Advantages of item complexity modeling with LLTM 
include elaborating construct validity at the item level, defining variables for item design, 
predicting parameters of new items, item banking by sources of complexity and providing a 
basis for item design and item generation. These advantages will be reviewed more com-
pletely below.  

However, despite the many advantages of applying LLTM to test items, it has been ap-
plied less often to understand the sources of complexity for operational test items. Instead, 
item difficulty statistics, such as classical test theory p-values or item response theory b-
values, are modeled from item complexity factors using regression techniques. Often this 
approach is used because raw item response data cannot be made available. For example, 
Newstead et al (2006) modeled item difficulty of complex logical reasoning items from the 
Graduate Record Examination (GRE). Similarly, Gorin and Embretson (2006) modeled item 
parameters for verbal comprehension items from the GRE while Embretson and Gorin 
(2001) modeled item parameters for the Assembling Objects Test from the Armed Services 
Vocational Aptitude Battery (ASVAB). To date, item difficulty modeling has provided va-
lidity evidence for many tests, including English language assessments, such as TOEFL 
(Freedle & Kostin, 1996, 1993; Sheehan & Ginther, 2001) and the GRE (Enright, Morley, & 
Sheehan, 1999; Gorin & Embretson, 2006).  

Unfortunately, the studies of item difficulty based on regression modeling have less clear 
interpretations about the relative impact of the complexity variables in the model. That is, the 
standard errors often are large since the regression modeling is applied to item statistics 
rather than raw item response data. Furthermore, the parameters estimated for the impact of 
the complexity variables are not useful for item banking because the usual properties of 
consistency and unbiasedness do not extend to the modeling of item statistics.  

In this paper, applications of LLTM to items from a widely used test of mathematical 
reasoning will be contrasted with regression modeling of item statistics. The item complexity 
variables are based on a cognitive theory of mathematical problem solving that was devel-
oped for complex items. Prior to presenting the studies on mathematical reasoning, the 
LLTM and its advantages will be elaborated. 

 
 

LLTM and related models 
 
Several IRT models have been developed to link the substantive features of items to item 

difficulty and other item parameters. Unidimensional IRT models with this feature includes 
the Linear Logistic Test Model (LLTM; Fischer, 1973), the 2PL-Constrainted Model (Em-
bretson, 1999) and the Random Effects Linear Logistic Test Model (LLTM-R; (Janssen, 
Schepers, & Peres, 2004). Also, the hierarchical IRT model (Glas & van der Linden, 2003) 
could be considered as belonging to this class, if item categories are considered to define 
substantive combinations of features. In this section, these models will be reviewed. 
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The LLTM (Fischer, 1973) belongs to the Rasch family of IRT models, but item diffi-
culty is replaced with a model of item difficulty. In LLTM, items are scored on stimulus 
features, qik, which is the score of item i on stimulus feature k in the cognitive complexity 
model of items. Estimates from LLTM include ηk, the weight of stimulus feature k in item 
difficulty and θj, the ability of person j. The probability that the person j passes item i, 
P(Xij=1) is given as follows: 
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where qi1 is unity and 01 is an intercept. No parameter for item difficulty appears in the 
LLTM; instead, item difficulty is predicted from a weighted combination of stimulus fea-
tures that represent the cognitive complexity of the item. That is, the weighted sum of the 
complexity factors replaces item difficulty in the model. In Janssen et al’s (2004) model, 
LLTM-R, a random error term is added to the item composite to estimate variance in item 
difficulty that is not accounted for by the complexity model.  

The 2PL-Constrained model (Embretson, 1999) includes cognitive complexity models 
for both item difficulty and item discrimination. In this model, qik and qim are scores of 
stimulus factors, for item difficulty and item discrimination, respectively, in item i. The 
model parameter 0k is the weight of stimulus factor k in the difficulty of item i, Jm is the 
weight of stimulus factor m in the discrimination of item i and θi is defined as in Equation 1. 
The 2PL-Constrained model gives the probability that person j passes item i as follows: 
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where qi1 is unity for all items and so J1 and 01 are intercepts. The 2PL-Constrained is the 
cognitive model version of the 2PL model, since both the item difficulty parameter bi and the 
item discrimination parameter ai are replaced with cognitive models.  

Finally, the hierarchical IRT model (Glas & van der Linden, 2003) is similar to the 3PL 
model, except that the parameters represent a common value for a family of items. The prob-
ability is given for person j passing item i from family p, and the item parameters are given 
for the item family, as follows: 
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where aip is item slope or discrimination of item family p, bip is the item difficulty of item 
family p, cip is lower asymptote of item family p and θj is ability for person j. Thus, in this 
model, items within family p are assumed to have the same underlying sources of item diffi-
culty, but differing surface features. For example, in mathematical word problems, the same 
essential problem can be presented with different numbers, actors, objects and so forth. Of 
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course, substituting surface features can create variability within a family and hence the 
hierarchical model includes assumptions about the distribution of the item parameters. 

It should be noted that the original LLTM also can be formulated to represent item fami-
lies in modeling item difficulty. That is, the qik represent a set of dummy variables that are 
scored for items in the same family. The random effects version, LLTM-R, can be formu-
lated with dummy variables and, in this case, would estimate variance due to items within 
families. 

 
 

Advantages of LLTM and related models 
 
If LLTM is estimated with item complexity factors that represent theoretically interesting 

and empirically supported variables, then applying the model to operational tests has several 
advantages. First, construct validity is explicated at the item level. The relative weights of 
the underlying sources of cognitive complexity represent what the item measures. Messick 
(1995) describes this type of item decomposition as supporting the substantive aspect of 
construct validity. Second, test design for ability tests can be based on cognitive complexity 
features that have been supported as predicting item psychometric properties. That is, the test 
blueprint can be based on stimulus features of items that have empirical support. Third, the 
empirical tryout of items can be more efficiently targeted. Typically, item banks have short-
ages of certain levels of difficulty. By predicting item properties such as item difficulty, 
empirical tryout can be restricted to only those items that correspond to the target levels of 
difficulty. Furthermore, items with construct-irrelevant features can be excluded from tryout 
if they are represented by variables in the model. Fourth, predictable psychometric properties 
can reduce the requisite sample size for those items that are included in an empirical tryout 
(Mislevy, Sheehan & Wingersky, 1993). The predictions set prior distributions for the item 
parameters, which consequently reduces the need for sample information. Under some cir-
cumstances, predicted item parameters function nearly as well as actually calibrated parame-
ters (Bejar et al, 2003). 

Fifth, a plausible cognitive model provides a basis for producing items algorithmically. 
Items with different sources of cognitive complexity can be generated by varying item fea-
tures systematically, based on the cognitive model. Ideally, these features are then embedded 
in a computer program to generate large numbers of items with predictable psychometric 
properties (e.g., Embretson, 1999; Hornke & Habon, 1986 ; Adrensay, Sommer, Gittler & 
Hergovich, 2006). Sixth, a successful series of studies to support the model of item complex-
ity can provide the basis for adaptive item generation. This advantage takes computerized 
adaptive testing to a new level. That is, rather than selecting the optimally informative item 
for an examinee, instead the item is generated anew based on its predicted psychometric 
properties, as demonstrated by Bejar et al (2003). Finally, score interpretations can be linked 
to expectations about an examinee’s performance on specific types of items (see Embretson 
& Reise, 2000, p. 27). Since item psychometric properties and ability are measured on a 
common scale, expectations that the examinee solves items with particular psychometric 
properties can be given. However, item estimates based on LLTM and related models go 
beyond the basic common scale, because the item solving probabilities are related to various 
sources of cognitive complexity in the items. Stout (2007) views this linkage as extending 
continuous IRT models to cognitive diagnosis, in the case of certain IRT models.  
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The cognitive complexity of mathematical problem solving items 
 
Cognitive complexity level and depth of knowledge have become important aspects of 

standards-based assessment of mathematical achievement. Cognitive complexity level is 
used to stratify items in blueprints for many state year-end tests and in national tests. How-
ever, obtaining reliable and valid categorizations of items on cognitive complexity has 
proven challenging. For example, although items with greater cognitive complexity should 
be empirically more difficult, it is not clear that evidence supports this validity claim. Fur-
ther, rater reliability even on national tests such as NAEP is not reported. Yet another chal-
lenge is some systems for defining cognitive complexity (e.g., Webb, 1999) seemingly rele-
gate the predominant item type on achievement tests (i.e., multiple choice items) to only the 
lowest categories of complexity.  

In this study, a system for understanding cognitive complexity of mathematical problem 
solving items is examined for plausibility. The system is based on a postulated cognitive 
model of mathematical problem solving which is examined for empirical plausibility using 
item difficulty modeling. Two approaches to understanding cognitive complexity in items, 
LLTM and regression modeling, are presented and compared. For both approaches, the 
development of quantitative indices of item stimulus features that impact processing diffi-
culty is required. Processing difficulty, in turn, impacts psychometric properties. If the model 
is empirically plausible, support for the substantive aspect of validity (Messick, 1995) or for 
construct representation validity (Embretson, 1998) is obtained.  

 
 

Theoretical background 
 
The factors that underlie the difficulty of mathematics test items have been studied by 

several researchers, but usually the emphasis is to isolate the effects of a few important vari-
ables (e.g., Singley & Bennett, 2002; Arendasy & Sommer, 2005; Birenbaum, Tatsuoka, & 
Gurtvirtz, 1992). The goal in the current study was to examine the plausibility of a model 
that could explain performance in a broad bank of complex mathematical problem solving 
items. Mayer, Larkin and Kadane’s (1984) theory of mathematical problem solving is suffi-
ciently broad to be applicable to a wide array of mathematical problems. Mayer et al (1984) 
postulated two global stages of processing with two substages each: Problem Representation, 
which includes Problem Translation and Problem Integration as substages, and Problem 
Execution, which includes Solution Planning and Solution Execution as substages. In the 
Problem Representation stage, an examinee converts the problem into equations and then in 
the Problem Execution stage, the equations are solved. Embretson (2006) extended the 
model to the multiple choice item format by adding a decision stage to reflect processing 
differences in the role of distractors (e.g., Embretson and Wetzel, 1987).  

Figure 1, an adaptation of an earlier model (Embretson, 2006), presents a flow diagram 
that represents the postulated order of processes in general accordance with Mayer et al’s 
(1984) theory. A major distinction in the model is equation source. If the required equations 
are given directly in the item, then Problem Execution is the primary source of item diffi-
culty. If the requisite equations are not given directly in the item, then processes are needed 
to translate, recall or generate equations. Once the equations are available in working mem- 
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Figure 1: 
Cognitive Model for Mathematical Problem Solving Items 

 
 

ory, the Problem Execution stage can be implemented. Problem Execution involves 1) plan-
ning, in which a strategy for isolating the unknowns is developed and implemented, 2) solu-
tion execution, in which computations are made to obtain the unknowns, and 3) decision, in 
which the obtained solution is compared to the response alternatives. Some items do not 
require solution planning, however, since the equations are given in a format so that only 
computation algorithms need to be applied. 

Several variables were developed in a previous study (Embretson, 2006) to represent the 
difficulty of the postulated stages in mathematical problem solving. For the Problem Transla-
tion stage, a single variable, encoding, was scored as the sum of the number of words, term 
and operators in the stem. For the Problem Integration stage, several variables were scored to 
represent processing difficulty for items in which the equation was not given: 1) translating 
equations from words, 2) number of knowledge principles or equations to be recalled, 3) 
maximum grade level of knowledge principles to be recalled and 4) generating unique equa-
tions or representations for the problem. For some items a special problem representation 
may be needed; that is, visualization may be required when a diagram is not provided. For 
the Solution Planning stage, two variables, the number of subgoals required to obtain the 
final solution and the relative definition of unknowns determine item difficulty. For the 
Solution Execution stage, the number of computations and the procedural level impact item 
difficulty. Finally, for the Decision stage, item difficulty is impacted when finding the cor-
rect answer involves extensive processing of each distractor. This occurs when the answer 
obtainable from the stem alone cannot be matched directly to a response alternative. 
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Method 
 
Test and item bank. A large set of disclosed items were available from the Quantitative 

section of the GRE. The Quantitative section contains three types of items; Problem Solving, 
Quantitative Comparison and Data Interpretation. A Problem Solving item consists of a stem 
that defines the problem and five unique response choices. The stems range in length and 
type; some stems are highly elaborated word problems while others contain equations or 
expressions. A Quantitative Comparison item consists of a short stem and two columns, A 
and B, that contain either numbers or equations. Each item has the same four response alter-
natives; “The quantity in A is greater”, “The quantity in B is greater”, “The quantities are 
equal”, and “The relationship cannot be determined”. Finally, Data Interpretation items 
consist of a graph, table or chart, a short stem that poses a question about the display and five 
unique response alternatives.  

For each item, the GRE item bank parameters were available. In the current study, only 
the Problem Solving items were modeled because they are used widely on many high stakes 
tests to measure achievement or ability.  

Design. Eight test forms had been administered in a previous study to collect item response 
time data for developing the cognitive model for the mathematical problem solving items (Em-
bretson, 2006). However, item response data were also available and had not been previously 
analyzed. Each test form contained 43 items, of which 12 items were linking items and the 
remaining items were a mixture of Problem Solving items and Quantitative Comparison items. 
A total of 112 Problem Solving items were included across the eight forms. 

Participants. The participants were 534 undergraduates from a large Midwestern Univer-
sity who were enrolled in an introductory psychology course. The participants were earning 
credits as part of a course requirement.  

Procedures. Each participant was randomly assigned a test form. All test forms were 
administered by computer in a small proctored laboratory. The test administration was not 
speeded as participants were allowed up to one hour to complete the test form. Nearly all 
participants completed the test in the allotted time.  

Cognitive complexity scores. The items were scored for cognitive complexity by multiple 
raters. All items were outlined for structure prior to scoring. The variables were scored as 
follows: 1) Encoding, a simple count of the number of words, terms and operators in the item 
stem, 2) Equation Needed, a binary variable scored “1” if the required equation was not 
included in the item stem, 3) Translate Equations, a binary variable scored “1” if the equa-
tion was given in words in the item stem, 4) Generate Equations, a binary variable scored 
“1” if the examinee had to generate a unique representation of the problem conditions, 5) 
Visualization, a binary variable scored “1” if the problem conditions could be represented in 
a diagram that was not included, 6) Maximum Knowledge, the grade level of the knowledge 
required to solve the problem (scored from National Standards), 7) Equation Recall Count, 
the number of equations that had to be recalled from memory to solve the problem, 8) Sub-
goals Count, the number of subgoals that had to be solved prior to solving the whole prob-
lem, 9) Relative Definition, a binary variable scored “1” if the unknowns were defined rela-
tive to each other, 10) Procedural Level, the grade level of the required computational proce-
dures to solve the problem, 11) Computational Count, the number of computations required 
to solve the problem and 12) Decision Processing, scored “1” if extended processing of the 
distractors was required to reject all but the correct answer. 
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Results 
 
Descriptive statistics. The Rasch model parameters were calibrated using the twelve 

common items to link item difficulties (bi) across forms using BILOG-MG. Estimates were 
scaled by fixing item parameters (Mn = 0, Slope = 1), according to typical Rasch model 
procedures. An inspection of the goodness of fit statistics for items, based comparing ex-
pected versus observed response frequencies, indicated that only two of the 112 items failed 
to fit the Rasch model (p’s < .01). Lowering the criterion for misfit resulted in only one more 
additional item that failed to fit (p <.05). Thus, the Rasch model was a good fit to the item 
response data.  

Since the sample differed from the target GRE population, it was desirable to assure that 
the difficulties were appropriate for the sample. Thus, items were selected for appropriate 
item difficulties within a specified range of estimated item difficulties (-1.80 < bi < 1.80). 
Eleven items of the 112 were eliminated using this criterion, thus leaving 101 items for 
analysis. The classical item difficulty statistic, p-value, for the remaining items then fell 
within an acceptable range (.10 < p i < .90).  

Table 1 shows the mean item difficulty for the estimates from the sample and from the 
item bank parameters. The means and standard deviations differ, but these differences are 
due to differences in the population of examinees, the standardization procedures (i.e., scal-
ing the solution to the items or to the population ability distribution) and the model that was 
estimated (Rasch versus 3PL). Nonetheless, the item difficulty estimates from the sample 
were highly correlated with the item bank estimates (r = .834), thus supporting general com-
parability of the task across the two populations. 

Table 1 also presents the means for the cognitive model variables. It can be seen that En-
coding is fairly complex across items, with an average of almost 29 words, terms and opera-
tors per item stem. Equation Needed, Translate Equations, Generate Equations and Visuali-
zation are all binary variables and can be interpreted as proportions. Hence, a high propor-
tion of items require the examinee to produce an equation, many problems require either 
translating or generating equations, while few items require visualization. Maximum Knowl-
edge indicates that most items required 7th grade knowledge or less, while Equation Recall 
Count indicates that the mean number of equations to be recalled was somewhat less than 
one. The mean for Subgoals Count was also somewhat less than one, which indicates that 
many problems have subgoals. The mean for Relative Definition, a binary variable, indicated 
that many problems have relatively defined unknowns and consequently require procedures 
for solving simultaneous equations. The mean for Procedural Level, a contrast coded vari-
able, was consistent with the average item involving no higher level than computations with 
fractions. The mean for Computation Count indicated that most problems involved moderate 
numbers of computations. Finally, the mean for Decision Processing, a binary variable, 
indicated that only a small proportion of items involved extensive comparisons of the dis-
tractors.  

Table 2 presents the correlations of item difficulty with the cognitive model variables. 
Although the two estimates of item difficulty were obtained from both different populations 
and different IRT models (i.e., Rasch model for the undergraduate sample and the 3PL 
model for the item bank calibrations, it can be seen that the correlations are quite similar 
with the cognitive model variables. Significant positive correlations with item difficulty were 
obtained for most variables. That is, Encoding, Equation Needed, Translate Equations, Gen-
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erate Equations, Visualization, Maximum Knowledge, Equation Recall Count, Relative 
Definition and Decision Processing had significant positive correlations with both estimates 
of item difficulty (p’s < .05). Subgoal Count had a significant positive correlation with the 
 

 
Table 1: 

Descriptive Statistics on Model Variables 
 

 Mean Std. 
Deviation 

N 

Item Difficulty from Item Bank .31  .94 101 
Item Difficulty Sample Estimate -.00 .79 101 
Encoding 28.63 13.67 101 
Equation Needed .89 .31 101 
Translate Equations .38 .49 101 
Generate Equatiions .33 .47 101 
Visualization .08 .27 101 
Maximum Knowledge 6.98 1.45 101 
Equation Recall Count .75 1.03 101 
Subgoal Count .76 1.00 101 
Relative Definition .44 .50 101 
Procedural Level -1.12 1.75 101 
Computation Count 3.74 2.39 101 
Decision Processing .06 .24 101 

 
 

Table 2:  
Correlations of Model Variables with Item Difficulty Estimates 

 

  
Item Difficulty  

from Item Bank 
 Item Difficulty  

 Sample Estimate 
Item Difficulty Item Bank  1.000 .834** 
Item Difficulty Sample  .834**  1.000  
Encoding .355** .328** 
Equation Needed .305**  .232*.  
Translate Equations .247**  .302** 
Generate Equations .479**  .435** 
Visualization  .175* .257**  
Maximum Knowledge  .201*  .205* 
Equation Recall Count  .144+  .166* 
Subgoal Count  .165*  .141+ 
Relative Definition .348** .323** 
Procedural Level  -.041  .028 
Computation Count  .085  .091 
Decision Processing  .362** .343** 

+ p < .10, * p < .05, ** p < .01 
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item bank estimates of item difficulty and a marginally significant positive correlation with 
the sample estimates of item difficulty. The highest single correlation with item difficulty for 
both estimates was for Generate Equations. Procedural Level and Computation Count did not 
correlate significantly with either estimate of item difficulty. 

Regression modeling of cognitive complexity. Each estimate of item difficulty was mod-
eled using hierarchical regression. Table 3 presents the hierarchical regression models by 
stage for each estimate of item difficulty. The relevant cognitive variables for each stage 
were entered as a block in a hierarchical regression, with the order of entry into the model 
corresponding to the temporal order of the stages. It can be seen that the results are quite 
similar with one minor exception. That is, for both estimates of item difficulty, the Encoding, 
Integration, Solution Planning and Decision stages had significant contributions to prediction 
(p’s < .05). For the Solution Execution stage, however, a marginally significant effect (p = 
.076) was obtained for item difficulty estimates from the item bank, but no significant effect 
for the sample estimates of item difficulty.  

The patterns of significance for the regression coefficients of the individual cognitive 
variables within the stages, however, did vary across the two item difficulty estimates, even 
though the scored model variables were identical. For the item difficulty estimates from the 
item bank, shown on Table 4, significant regression coefficients were found for Encoding, 
Generate Equation and Decision Processing (p’s < .05). Marginally significant regression  
 

 
Table 3:  

Hierarchical Regression Modeling by Postulated Processing Stage 

Model for Item Difficulty Estimates from Item Bank

.355 .126 .126 14.258 1 99 .000

.596 .356 .230 5.529 6 93 .000

.625 .391 .036 2.654 2 91 .076

.633 .401 .009 .703 2 89 .498

.672 .451 .051 8.115 1 88 .005

Model
1 Encoding

2 Integration

3 Solution Planning

4 Solution Execution

5 Decision

R R Square
R Square
Change F Change df1 df2

Sig. F
Change

Change Statistics

 
Model for Sample Estimates of Item Difficulty

.328 .107 .107 11.919 1 99 .001

.591 .349 .242 6.975 5 94 .000

.604 .365 .016 .759 3 91 .520

.617 .381 .016 1.166 2 89 .316

.660 .435 .054 8.441 1 88 .005

Model
1 Encoding

2 Integration

3 Solution Planning

4 Solution Execution

5 Decision

R R Square
R Square
Change F Change df1

df
2

Sig. F
Change

Change Statistics
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Table 4:  
Regression Coefficients for Modeling of Item Difficulty Parameters from the Item Bank 

 
Item Predictor b Coeff. SEb  t Prob. 
Constant -.678 .551 -1.229 .222 
Encoding  .015 .007 2.227 .028 
Equation Needed  .195 .268 .729 .468 
Translate Equations  .070 .197 .354 .724 
Generate Equations  .663 .184 3.613 .001 
Visualization  .533 .281 1.899 .061 
Maximum Knowledge  -.008 .080 -.094 .925 
Equation Recall Count -.065 .124 -.521 .604 
Subgoals Count  .203 .121 1.672 .098 
Relative Definition  .319 .188 1.699 .093 
Procedural Level  .039 .046 .836 .405 
Computation Count -.024 .039 -.622 .535 
Decision Processing  .999 .353 2.826 .006 

 
 

coefficients were found for Visualization, Subgoals Count and Relative Definition. Thus, 
some support was found for four of the model variables and marginal support was found for 
two more variables. 

For the item difficulty estimates from the sample, presented on Table 5, significant re-
gression coefficients were observed for Generate Equations and Decision Processing and 
marginally significant coefficients were observed for Visualization and Encoding. Thus 
support was found for only two of the model variables and marginal support was found for 
another two variables.  

 
Table 5:  

Regression Coefficients for Cognitive Model on Undergraduate Sample 
 

Item Predictor b Coeff. SEb  t Prob. 
Constant -.513 .472 -1.086 .280 
Encoding  .010 .006  1.701 .093 
Equation Needed -.050 .229  -.217 .829 
Translate Equations  .291 .170  1.712 .090 
Generate Equations  .532 .159  3.337 .001 
Visualization  .584 .254  2.295 .024 
Maximum Knowledge  -.025 .068  -.367 .715 
Equation Recall Count  .040 .107  .375 .709 
Subgoal Count  .086 .104  .825 .412 
Relative Definition  .169 .162  1.043 .300 
Procedural Level  .057 .040  1.434 .155 
Computation Count -.009 .034  -.280 .780 
Decision Processing  .878 .302  2.905 .005 
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LLTM analysis of cognitive complexity. Maximum likelihood estimates of LLTM pa-
rameters from the raw item data were based on formulating the model as a non-linear mixed 
model (DeBoeck & Wilson, 2004). The person parameters were specified as random vari-
ables from a standard normal distribution, ~N(0,1). The item model variables were specified 
as fixed effects. All models were estimated with adaptive Gaussian quadrature to obtain 
marginal maximum likelihood estimates for the parameters. Three models were specified as 
alternative LLTMs: 1) the Rasch model, with 101 dummy variables and no intercept, 2) the 
cognitive model with 12 estimates plus an intercept and 3) a null model, with a single esti-
mate of item difficulty which was used for comparison purposes. Since the estimates were 
scaled to the person distribution, a constant slope (a) was also estimated for each model. 
LLTM estimated with these constraints yields the same likelihood as LLTM parameters 
estimated with a fixed to 1.0 and a freely estimated variance. The item parameters may be 
rescaled by a. Linking across forms was obtained through the common items on each form.  

Since the Rasch model had been previously established as appropriate for the data (see 
above), the main concern was the relative fit of the three models. As expected, the Rasch 
model was the best fitting model, as it had the smallest value on the Akaike Information 
Criterion (-2lnL= 10,859, AIC = 11,063). The LLTM, with 12 estimates for the model vari-
ables and an intercept, was the second best model (-2lnL=11,296, AIC = 11,324). Finally, the 
null model yielded the worst fit (-2lnL=11,778, AIC = 11,782).  

The relationship of the LLTM predictions of item difficulty to the Rasch model item dif-
ficulties was examined in two ways. First, a fit index based on the log likelihoods of the 
alternative models, the delta fit index (Embretson, 1995) was computed. The delta index 
ranges from 0 to 1 and is based on the comparison of the relative likelihood of the null model 
to the likelihood of the LLTM and the Rasch model. Moderately strong fit was obtained 
()1/2=.724), which is comparable in magnitude to a multiple correlation. Second, a scatter-
plot of the Rasch item difficulties versus the LLTM predictions was prepared, as shown on 
Figure 2. The Rasch estimates are shown as error bars based on a 90 percent confidence 
interval defined by the associated standard errors for each estimate. The LLTM prediction 
for each item is shown as a dark circle. It can be seen that for a majority of the items, the 
LLTM predictions fall within the 90 percent confidence interval for the Rasch item difficul-
ties. 

Table 6 presents the estimates of the cognitive model coefficients that were from the LLTM. 
Eight cognitive model variables, Encoding, Equation Needed, Translate Equation, Generate 
Equations, Visualization, Subgoals Count, Relative Definition and Decision Processing, are 
statistically significant (p’s < .05). An additional cognitive variable, Procedural Level, has 
borderline statistical significance (p=.0516). Only three model variables, Maximum Knowl-
edge, Equation Recall and Computation Count, failed to reach statistical significance.  
Both direct estimates of the coefficients for the model variables (η) and their associated 
standard errors are shown on Table 6. It can be seen that the standard errors for the model 
coefficients are much smaller for the LLTM than for the regression modeling coefficients 
shown on Table 4 and Table 5. In LLTM, the size of the standard errors is related to the 
number of persons in the dataset. For the regression modeling, the standard error depends on 
the number of items since item statistics are the target of the modeling. Table 6 also presents 
rescaled estimates (0*) of the model coefficients obtained from LLTM. The rescaled esti-
mates (0*) may be compared to the regression coefficients on Table 5. Rescaling was neces-
sary due to the differing manner of model identification in the two analyses, as described 
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above. Table 6 also shows that the rescaled estimates for most model variables are similar in 
pattern and general magnitude to the regression coefficients shown on Table 5. However, the 
exact estimates do vary, as would be expected from the bias produced by modeling statistics 
rather than raw data.  

 

 
Figure 2: 

Prediction of Rasch Item Difficulty from LLTM 

 
Table 6: 

Parameter Estimates for the LLTM 
 

Item Predictor  η  se  t  Prob.  η * 
Constant  .116 .208  .56 .5769 -.549 
Discrimination Constant  .864 .041 21.09 <.0001 1.000 
Encoding  .015 .003  5.51 <.0001  .013 
Equation Needed -.355 .095 -3.72 .0002  -.307 
Translate Equation  .291 .083  3.51 .0005  .251 
Generate New Equation  .472  .072  6.53 <.0001  .408 
Visualization  .616 .128  4.83 <.0001  .532 
Maximum Knowledge -.023 .029  -.78 .4371  -.020 
Equation Recall Count   .015 .047  .03 .7521  .013 
Subgoals Count  .135 .049  2.76 .0060  .117 
Relative Definition  .285 .076  3.73 .0002  .246 
Procedural Level  .037 .019  1.95  .0516  .032 
Computation Count -.004 .017  -.23 .8154  -.003 
Decision Processing 1.23 .186  6.63 <.0001  1.063 
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Item design. As noted above, a plausible model of item complexity using LLTM permits 
items to be banked by their sources and levels of complexity. In the cognitive model for 
mathematical problem solving that was developed, the processes can be regarded as com-
promising two global stages, Problem Representation and Problem Execution. The sources 
of item complexity can be obtained for the global stages by combining the variables accord-
ing to the LLTM weights that are included in the sub-stages. Thus, the predicted problem 
complexity due to Problem Representation, b’PR, can be obtained as follows: 

 b’PR = .015(Encoding) + (-.355)(Equation Needed) + .291(Translate Equation) +  
.472(Generate Equation) + .616(Visualization) + (-.023)(Maximum Knowl-
edge) +.015(Equation Recall).  

 
Similarly, the predicted problem complexity due to Problem Execution difficulty, b’PD, 

can be obtained as follows: 
 b’PD = .135(Subgoals Count) + .285(Relative Definition) + .037(Procedural Level) +  

(-.004)(Computation Count) + 1.23(Decision Processing). 
  
Applying these weights to the scored variables, qik, resulted in scores for each item on the 

global stages. The means for Problem Representation (Mn = .277, SD = .401) and Problem 
Execution (Mn = .241, SD = .349) are very similar in magnitude. The correlation between 
the sources of item complexity was statistically significant, but relatively small in magnitude 
(r = .255, p<.01). Figure 2 presents a scatterplot of the two predicted sources of item diffi-
culty. The means for each variable are shown as reference lines. It can be seen that items fall  
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Figure 3: 

Scatterplot of Two Major Sources of Item Complexity 
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within each section of the scatterplot. Thus, there are items which involve primarily Problem 
Representation or Problem Translation as sources of difficulty, while other items are more 
balanced for sources of difficulty. 

 
 

Discussion 
 
The results have several implications. First, the results support the validity of the cogni-

tive model to understand the substantive aspect of validity (Messick, 1995) for items from a 
major test of quantitative ability. The postulated model of cognitive complexity for mathe-
matical problem solving was supported from the results of both the regression approach and 
the LLTM approach. The cognitive model accounted for about half the variance of item 
difficulty. This is a strong level of prediction for modeling item difficulty in a broad bank of 
existing mathematical problem solving items. The items in the current study were quite 
diverse in content, syntax and form, as well as in mathematical requirements. Higher levels 
of prediction (Enright, Morley & Sheehan, 1999; Bejar et al, 2003; Embretson & Daniel, 
2008) have been reported for items that are created by systematically varying features of 
existing items (i.e., item models). That is, the items that are created are identical except for 
those features that are designed to vary. The predictions obtained from these models, conse-
quently, extend only to the difficulty of items produced from the item models which were 
varied in the study, not to the difficulty of items in broader item bank.  

Second, the results support the potential of the cognitive model as item design principles 
for cognitive complexity. That is, support was found for the variables that were hypothesized 
to impact complexity in the postulated processing stages. However, the LLTM approach led 
to a more consistent and powerful estimation of the impact of the complexity variables in the 
cognitive model. Most of the model variables were significant predictors in LLTM, which 
suggests that they can be varied to produce items with different sources and levels of com-
plexity. In contrast, the hierarchical regression modeling approach led to support for most of 
the postulated processing stages, but was unable to untangle the contribution of specific 
variables. Only two item complexity variables, generating mathematical representations and 
extensive processing of the distractors, were indicated as consistently significant predictors 
of item difficulty from both the sample estimates and the item bank parameters. Since LLTM 
makes full use of the data in estimating the standard errors of the parameters, it led to more 
powerful tests of the model variables. Results from a recent study supported the validity of 
the item complexity variables that were identified with the more powerful LLTM analysis. 
That is, Embretson and Daniel (2008) found that controlled manipulations of several vari-
ables in the cognitive model impacted item difficulty.  

Third, the results support the potential of selecting mathematical problem solving items for 
specific levels and sources of cognitive complexity. The coefficients for LLTM are useful for 
item banking by sources of cognitive complexity, particularly since they are item response 
theory model estimates. To show the potential for test design, item difficulties were estimated 
for the two global stages of information processing in the cognitive model, which represents a 
composite of the corresponding cognitive model variables. Interesting, Problem Representation, 
which includes encoding the item and producing an equation, was approximately equal in diffi-
culty in the items as Problem Execution, which includes planning to isolate unknowns and 
computing the results. However, although these two stages were generally equally difficult in 
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the item set as a whole, substantial variability was found between items. The scatterplot showed 
that items could be selected to represent about an equal balance of the sources of difficulty, if 
desired. However, items also could be selected to represent primary Problem Representation 
difficulty or Problem Execution difficulty. This is an important design issue. One would expect 
ability test items to consistently involve difficulty in the Problem Representation phase, which 
probably involves greater levels of reasoning. In contrast, mathematical achievement tests may 
emphasize Problem Execution more predominantly. 

Fourth, the level of prediction obtained may also be sufficient to select items for opera-
tional use without further tryout. Simulation studies have shown that although using pre-
dicted item properties in place of calibrated properties increases the standard errors of score 
estimates (see Mislevy, Sheehan and Wingersky, 1985; Embretson, 1999; Bejar, 2003), the 
increased error may be easily compensated by a slightly longer test. Further research is 
clearly needed on this issue. 

Finally, it should be noted that LLTM, rather than the regression modeling approach, 
should be applied whenever possible. The main advantage is that the standard errors will be 
appropriate so that the effects of the cognitive model variables may be untangled. Unfortu-
nately, applying LLTM is not always feasible in practical testing situations, due to the un-
availability of the raw data. It is important that the researcher be aware of the disadvantages 
in interpreting the results.  

In summary, the application of LLTM to mathematical problem solving items from a 
widely used test of quantitative ability clearly supported a processing model of item com-
plexity. The results have several implications for item and test design, as well as for con-
struct validity.  
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